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• Introduction to UCG

• Interactions (Scattering, Feshbach, ...)

• Introduction to Optical Lattices

• Detection Techniques

• Many-Body Physics in Optical Lattices

• Bose Hubbard Model

• Fermi Hubbard Model

• Controlling Few Body Physics

Repulsively Bound Pairs, Correlated Atom Tunneling

Superexchange Interactions

Creating & Probing Entangled Atom States

Minimal Versions of Topologically Ordered States
(RVB, d-Wave,...)

Non-Equilibrium Dynamics

• Outlook

• Polar Molecules, Rydberg Atoms

Course Outline

Thursday, August 4, 11



The Challenge of Quantum Many Body Systems

• Understand and Design Quantum Materials - 
one of the biggest challenge of Quantum Physics in the 21st Century

• Technological Relevance

High-Tc Superconductivity (Power Delivery)

Magnetism (Storage, Spintronics...)

Novel Quantum Sensors (Precision Detectors) 

Quantum Computing 

Many cases: lack of basic understanding of underlying processes
Difficulty to separate effects: probe impurities, complex interplay, masking of effects...
Many cases: even simple models “not solvable”
Need to synthesize new material to analyze effect of parameter change
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Strongly Correlated Electronic Systems

In strongly correlated 
electron system spin-spin 

interactions exist.

Underlying many solid state & material science problems:
Magnets, High-Tc Superconductors, Spintronics ....
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i,� ĉ j,� +U �

i
n̂i,⇥n̂i,⇤ +V0 �

i,�
R2

i n̂i,�

Thursday, August 4, 11



Roadrunner – Los Alamos

2300 estimated number of protons in the universe

each doubling allows for one more spin 1/2 only

State of the art: < 40 spins (240x 240) (what does it take to simulate 300 spins ?)

1.1 Petaflops/s
2000 t

3.9 MW
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Introduction

• Controlling Single Quantum Systems

• New challenges ahead: control, engineer and understand complex quantum 
system 
quantum computers, quantum simulators, novel (states of) quantum matter, 
advanced materials, multi-particle entanglement

R. P. Feynman‘s Vision

A Quantum Simulator to study 
the  quantum behaviour 

of another system.

Single Atoms and Ions Photons Quantum Dots

R.P. Feyman, Int. J. Theo. Phys. (1982)
R.P. Feynman, Found. Phys (1986)
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From a Classical Gas to a Bose-Einstein-Condensate

Classical Gas

Coherent
Matter Wave
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Why is it Difficult to Reach BEC?

Condition for BEC: 

e.g. Water

For a typical density of water nH20 one obtains Tc=1K

Problem: Water is Ice @ 1K

Solution: Reduced densities by several orders of magnitude, such 
that the solid is only formed very slowly!

Even Lower Temperatures
are Necessary
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The Path to Bose-Einstein Condensation
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Laserkühlung am Werk
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Magnetic Traps for Neutral Atoms

Energy of an atom in
an external magnetic field

Force on an atom in
an inhomogeneous field
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Evaporative Cooling

With the help of RF-
transitions between 
neighbouring magnetic 
sublevels, the hottest atoms 
can be selectively removed 
from the trap.

Elastic collisions 
rethermalize the atoms 
resulting in a cooler and 
denser atomic distribution.

Phase space density 
is increased
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The Path to Bose-Einstein-Condensation

1. Magneto Optical Trap (MOT) (109 atoms)

2. Compressed MOT to increase density of atom cloud

3. Optical molasses mooling 

4. Optical pumping to spin polarize atoms

5. Magnetic trapping

6. Evaporative cooling

7. Bose-Einstein condensation (105-106 atoms) around temperatures of 1µK 
and densitied of 1014 cm-3
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From a Bose Gas without Interactions 
to a Strongly Correlated Bose System

No Interactions

Weak Interactions

Strongly Correlated System

Many-Body State
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Double Species MOT
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Dipole trap + 
Optical lattices
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Our Starting Point – Ultracold Quantum Gases

Parameters: 
Densities: 1015 cm-3

Temperatures: Nano Kelvin
Atom Numbers 106

Bose-Einstein Condensates 
e.g. 87Rb

Degenerate Fermi Gases
e.g. 40K

Ground States at T=0
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From Artificial Quantum Matter to Real Materials

e.g. High-Tc  Superconductors (YBCO)

•Densities:  1024-1025/cm3

•Temperatures:  mK – several hundred K

•Crystal Structures and 
Material Parameters given by Material
(Tuning possible via e.g. 
external parameters like e.g. pressure, B-fields
 or via synthesis)

Real MaterialsUltracold Quantum Gases in Optical Lattices

•Densities:  1014/cm3

(100000 times thinner than air)

•Temperatures:  few  nK
(100 millionen times lower than outer space)

•Crystal Structures and 
Material Parameters can
be changed dynamically and 
in-situ.

New tunable model systems for many body systems!

Low densities require us 
to work at even lower 

temperatures
but

we gain the control & manipulations 
techniques of the atomic physics 

toolbox
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Atomic Interactions
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Scattering Theory

Schrödinger Equation of Scattering Problem

Ĥ0 +Û(r)|yki= E|yki

y+
k = eikr + f (k,k0)

eikr

r

Wave function
in far-field (outside
region of scattering 
potential)
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Scattering Cross Section

Differential Scattering Cross Section

ds
dW

=
Rate of particles scattered into solid angle dW

incident particle flux

Particle flux

j = h̄
m

Im{Y⇤—Y}

we obtain 

ds
dW

= | f (q)|2

total scattering cross section

s =
Z ds

dW
dW
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Partial Wave Expansion

For spherically symmetric scattering potential we can write (partial wave decomposition)

yk = Â
l=0

AlPl(cosq)Rl(r)

For every angular momentum l, we obtain radial wave equation

✓
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+
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�
+U(r)

◆
Rl(r) = ERl(r)

For free particle motion (U=0), this corresponds to the differential equation 
of the spherical Bessel functions.

Rl(r) µ cosdl jl(kr)+ sindlnl(kr)

Rl(r) µ
r!•

1
kr

sin(kr+dl � l
p
2
)

This yields in the far field limit:
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Scattering Phase Shift & Scattering Amplitude

We can relate the scattering phase shift      to the scattering amplitude, via:

f (q) = 1

k

•

Â
l=0

(2l +1)eidl
sindlPl(cosq)

dl

s =
4p
k2

•

Â
l=0

(2l +1)sin2 dl

sl 
4p
k2 (2l +1)

scattering cross section

unitarity limit for partial wave cross sections
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s-Wave Scattering

R0(r) µ
r!•

1
kr

sin(kr+d0)

For r0 < r < 1/k we can approximate the above to 

a =
k!0

�d0

k

R0 ⇡ 1+
d0

kr
= 1� a

r

Scattering Length

Far field radial wave function

f (k) =
1

k cotd
0

(k)� ik
!� a

1�arek2/2+ ika

Scattering amplitude (including effective range)

tand0 '
k!0

�ka
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Scattering from Attractive Square Well Potential

for r < r0

for r > r0

Ansatz:

Wave vector in inner region of potential
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Scattering Wave Functions 

a<0

a>0

a=0

for 

no bound state

one bound state
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Scattering Length 
(Box Potential)

Scattering length

Resonances for:

Thursday, August 4, 11



Weakly Bound “Halo” States

Very extended “Halo states” are formed close to a Feshbach Resonance for a>0.
These correspond to weakly bound states that enter the potential well.

Binding energy of Halo state

Wave function of Halo state
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Some s-wave Scattering Spheres

Multiple scattering spheres become between different momentum components become visible!

Images shown after time of flight period.
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Scattering of Bosons

s-wave (l=0) d-wave (l=2,m=0)

from. Ch. Buggle (thesis UoA 2005)
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Pseudopotential

For ultracold collisions, scattering between particles is characterized by a single 
parameter - the scattering length.

We can replace the molecular scattering potential with alternative potential that
gives same scattering length!

e.g. Pseudopotential 

For regular functions at the origin, this latter derivative may be omitted:
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Identical Particle Scattering

For scattering of identical particles, the scattering wave-function has to obey the right
symmetry under particle exchange!

+ for Bosons, - for Fermions

Leads to constructive or destructive interference in partial wave amplitudes!

Identical Boson: s,d,f...  wave scattering (even partial waves)
Identical Fermions: p,g,h... wave scattering (odd partial waves)

s-wave scattering

distinguishable particles

indistinguishable particles

Consequence: no s-wave scattering for identical fermions!
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Feshbach Resonance

Potential curves of open and
closed scattering channels.

Scattering length and binding
energy of weakly bound state
across Feshbach resonance.
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Feshbach Resonances - Experiment

S. Inouye et al. Nature S. Cornish et al. PRL
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Converting Atoms Pairs into Bound Molecules

Adiabatic Feshbach Ramp

RF Association

Three-Body Recombination
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Creating a MBEC out of a Fermi Gas

atoms

Ebinding

EF

molecules BEC
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Molecular Bose-Einstein Condensates

S. Jochim et al., 
Science, 2003
(Innsbruck)

M. Greiner, C. Regal and D. 
Jin 
Nature, 2003
(JILA)

M. W. Zwierlein et al.,
Phys. Rev. Lett, 2003
(MIT)
see also Ch. Salomon (ENS) 
and J. Thomas (Duke)
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Atoms in Periodic Potentials
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Optical Lattice Potential – Perfect Artificial Crystals 

λ/2= 425 nm

Laser Laser

optical standing wave

Periodic intensity pattern creates 1D,2D or 3D light 
crystals for atoms (Here shown for small polystyrol particles).

Perfect model systems for a 
fundamental understanding of 
quantum many body systems
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1D, 2D & 3D Lattices

2D Lattices
Array of one-dimensional 
quantum systems

3D Lattices
Array of quantum dots
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…and in Higher Dimensions

Tunnel Coupling Tunable!
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…and in Higher Dimensions

Tuning the Dimensionality
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H� (n)
q (x) = E(n)

q � (n)
q (x) with H =

1
2m

p̂2 +V (x)

� (n)
q (x) = eiqx · u(n)

q (x)

HB u(n)
q (x) = E(n)

q u(n)
q (x) with HB =

1
2m

(p̂+q)2 +Vlat(x)

Single Particle in a Periodic Potential - Band Structure (1)

Solved by Bloch waves (periodic functions in lattice period)

q = Crystal Momentum or Quasi-Momentum
n = Band index

Plugging this into Schrödinger Equation, gives:
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V (x) = �
r

Vrei2rkx and u(n)
q (x) = �

l
c(n,q)

l ei2lkx

V (x)u(n)
q (x) = �

l
�
r

Vrei2(r+l)kxc(n,q)
l

(p̂+q)2

2m
u(n)

q (x) = �
l

(2h̄kl +q)2

2m
c(n,q)

l ei2lkx.

V (x) = Vlat sin2(kx) =�1
4

�
e2ikx + e�2ikx

⇥
+ c.c.

Single Particle in a Periodic Potential - Band Structure (2)

Use Fourier expansion

yields for the potential energy term

and the kinetic energy term

In the experiment standing wave interference pattern gives
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Single Particle in a Periodic Potential - Band Structure (3)

Use Fourier expansion

Diagonalization gives us Eigenvalues and Eigenvectors!
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Bandstructure - Blochwaves  
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wn(x� xi) = N �1/2 �
q

e�iqxi� (n)
q (x)

Wannier Functions

An alternative basis set to the Bloch waves can be constructed through localized wave-
functions: Wannier Functions!
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Dispersion Relation in a Square Lattice
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Measuring Momentum 
Distributions
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Time of flight interference pattern

• Interference between all waves coherently

 emitted from each lattice site

Ti
m

e 
of

 fl
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ht

Periodicity of the 
reciprocal lattice

20 ms

Wannier
envelope

Grating-like
interference
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Momentum Distributions – 1D

Momentum distribution can 
be obtained by Fourier 
transformation of the 
macroscopic wave function.

�(x) =
�

i

A(xj) · w(x� xj) · ei�(xj)
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�⇥j = (V ��/2) �t

�� = 0 �⇥ = �

Preparing Arbitrary Phase Differences 
Between Neighbouring Lattice Sites

Phase difference between 
neighboring lattice sites

(cp. Bloch-Oscillations)

But: dephasing if gradient is 
left on for long times !
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Mapping the Population of the Energy Bands 
onto the Brillouin Zones

Crystal momentum

Free particle
momentum

Population of nth band is 
mapped onto nth Brillouin 
zone !

Crystal momentum is conserved 
while lowering the lattice depth 
adiabatically !

A. Kastberg et al. PRL 74, 1542 (1995)
M. Greiner et al. PRL 87, 160405 (2001)
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Experimental Results 

Pi
et

 M
on

dr
ia

n

Brillouin Zones in 2D
Momentum distribution of a dephased condensate 
after turning off the lattice potential adiabtically

2D

3D
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Populating Higher Energy Bands

Stimulated Raman transitions 
between vibrational levels are 
used to populate higher energy 
bands.

Single lattice site Energy bands

Measured Momentum 
Distribution !
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From a Conductor to a Band Insulator

Fermi Surfaces become directly visible!

M. Köhl et al. Physical Review Letters (2005)
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