Noise Correlations

Proposal:

E. Altman, E. Demler & M. Lukin PRA (2004) A. Polkovnikov et al., PNAS (2006) **Experiment:** Fölling et al., Nature (2005), Greiner et al., PRL (2005) Rom et al., Nature (2006)

Guarrera et al., PRL (2008)

related work:

Bach & Rzazewski, PRA (2004) Z. Hadzibabic et al. PRL (2004),

Yasuda & Shimizu, PRL (1996), Schellekens et al., Science (2005), Jeltes et al.,Nature (2007) Öttl et al., PRL (2005), Estève et al., PRL (2006),

Detecting Expanding Atom Clouds

Typically Noise in Images of a Mott Insulator

Single Image

200

0

400

Corrleations in Noise?

Hanbury-Brown Twiss effect correlates fluctuations at special distances r!

Quantitatively

 $g^{(2)}(r) - l > 0$ $g^{(2)}(r) - l = 0$ $g^{(2)}(r) - l < 0$ Noise correlated (Bosons)

Noise uncorrelated

Noise anti-correlated (Fermions)

- Hanbury Brown-Twiss Effect for Atoms (1) -

- Hanbury Brown-Twiss Effect for Atoms (2) -

There's another ways....

Hanbury Brown 1916-2002

- Hanbury Brown-Twiss Effect for Atoms (3) -

Cannot fundamentally distinguish between both paths...

Hanbury Brown 1916-2002

- Hanbury Brown-Twiss Effect for Atoms (4) -

Interference in Two-Particle Detection Probability!

- Multiple Wave Hanbury Brown-Twiss Effect (4) -

Interference in Two-Particle Detection Probability!

Deriving the Noise Correlation Signal (1)

In Time of Flight we measure:
$$\langle \hat{n}_{3D}(\mathbf{x}) \rangle_{\text{tof}} = \langle \hat{a}_{tof}^{\dagger}(\mathbf{x}) \hat{a}_{\text{tof}}(\mathbf{x}) \rangle_{\text{tof}}$$

 $\approx \langle \hat{a}^{\dagger}(\mathbf{k}) \hat{a}(\mathbf{k}) \rangle_{\text{trap}} = \langle \hat{n}_{3D}(\mathbf{k}) \rangle_{\text{trap}}$

where
$$\left(\mathbf{k} = M\mathbf{x}/\hbar t\right)$$

In Noise Correlations we measure:

$$\langle \hat{n}_{3D}(\mathbf{x}) \hat{n}_{3D}(\mathbf{x}') \rangle_{\text{tof}} \approx \langle \hat{a}^{\dagger}(\mathbf{k}) \hat{a}(\mathbf{k}) \hat{a}^{\dagger}(\mathbf{k}') \hat{a}(\mathbf{k}') \rangle_{\text{trap}} = \langle \hat{a}^{\dagger}(\mathbf{k}) \hat{a}^{\dagger}(\mathbf{k}') \hat{a}(\mathbf{k}') \hat{a}(\mathbf{k}) \rangle_{\text{trap}} + \delta_{\mathbf{k}\mathbf{k}'} \langle \hat{a}^{\dagger}(\mathbf{k}) \hat{a}(\mathbf{k}) \rangle_{\text{trap}} .$$

Deriving the Noise Correlation Signal (2)

$$\hat{a}(\mathbf{k}) = \int e^{-i\mathbf{k}\mathbf{r}} \hat{\psi}(\mathbf{r}) d^3 r$$
 with $\hat{\psi}(\mathbf{r}) = \sum_{\mathbf{R}} \hat{a}_{\mathbf{R}} w(\mathbf{r} - \mathbf{R})$

$$\implies \hat{a}(\mathbf{k}) = \tilde{w}$$

 $\tilde{v}(\mathbf{k})\sum_{\mathbf{R}}e^{-i\mathbf{k}\mathbf{R}}\hat{a}_{\mathbf{R}}$ Plug this into four operator correlator

For Mott state or Fermi gas, one has

$$\langle \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}'} \rangle = n_{\mathbf{R}} \, \delta_{\mathbf{R},\mathbf{R}'}$$

which yields:

$$\langle \hat{n}_{3D}(\mathbf{x})\hat{n}_{3D}(\mathbf{x}')\rangle = |\tilde{w}(M\mathbf{x}/\hbar t)|^2 |\tilde{w}(M\mathbf{x}'/\hbar t)|^2 N^2$$
$$\times \left[1 \pm \frac{1}{N^2} \left|\sum_{\mathbf{R}} e^{i(\mathbf{x}-\mathbf{x}')\cdot\mathbf{R}(M/\hbar t)} n_{\mathbf{R}}\right|^2\right]$$

Information in the Noise – Correlations become visible!

$$g_{\exp}^{(2)}(\mathbf{b}) = \frac{\int \langle n(\mathbf{x} + \mathbf{b}/2) \cdot n(\mathbf{x} - \mathbf{b}/2) \rangle d^2 \mathbf{x}}{\int \langle n(\mathbf{x} + \mathbf{b}/2) \rangle \langle n(\mathbf{x} - \mathbf{b}/2) \rangle d^2 \mathbf{x}}$$

Fölling et al. Nature, 434, p. 481 (2005)

Let's change the sign...

Sympathetic Cooling of ⁴⁰K-⁸⁷Rb in Crossed Dipole Trap:

After final cooling in optical dipole trap 2×10⁵ ⁸⁷Rb (almost pure condensate) 2.5×10⁵ ⁴⁰K

After removal of ⁸⁷Rb

 $2 \times 10^{5} {}^{40}K @ T/T_F = 0.2$

Then load into 3D optical lattice and create a fermionic band insulator!

Adiabatic mapping: theory: A. Kastberg et al. PRL (1995) exp: M. Greiner et al., PRL (2001), M. Köhl et al. PRL (2005)

Mott insulator – Fermionic Band Insulator

Releasing the Fermi Gas

Noise Correlations of a Degenerate Fermi Gas

Rom et al. Nature **444**, 733 (2006)

First observation of fermionic antibunching for neutral atoms (maybe neutral particles)! (see also Jeltes et al., Nature 445, 402 (2007))

Thursday, August 4, 11

An Alternative Description

Why Bosons and Fermions are Different in their Correlations

Thursday, August 4, 11

Why Bosons and Fermions are Different in their Correlations

Now detection of many strongly correlated quantum states becomes possible!

Antiferromagnet

 $\langle \uparrow \rangle$

Spin wave

Charge density wave

1

In Situ Density Measurements

Absorption Imaging

Absorption per atom maximally approx 5-10% (typically smaller), mode-matching!

N. Gemelke et al., Nature 460, 995 (2009)

Thursday, August 4, 11

State of the Art

D. Weiss, Penn State

Nelson et al., Nature Phys. 3

- fluorescence ir
- 5 μ m lattice sp

Detecting Atoms with an Electron Beam

P. Würtz et al., PRL (2009)

Optical Superlattices

See also Related Experiments at NIST (T. Porto & W. D. Phillips)

TTT

Thursday, August 4, 11

000

Superimpose two standing waves with controllable phase & amplitude.

Array of double wells

17

Controllable Parameters

_______ • Intra & Interwell Barrier Depth

All parameters can be changed dynamically & in-situ!

Superlattices

Patterned loading of the short lattice

Patterned correlations

Detection of density wave via noise correlations.

2D Superlattice Geometries (1 SL)

LZ

Coupled Plaquette Systems

see B. Paredes & I. Bloch, PRA **77**, 23603 (2008) S. Trebst et al., PRL **96**, 250402 (2006)

Higher Lattice Orbital Physics

see V. Liu, A. Ho, C. Wu and others work exp: related to A. Hemmerich's exp.

