Spin Dependent Optical Lattices & Tunneling Control

Moving the Lattice Potentials

$$I_{-} = I_0 \sin^2(kx - \theta/2)$$
$$I_{+} = I_0 \sin^2(kx + \theta/2)$$

State Selective Lattice Potentials

Tensor Light Shifts

$$\hat{U} = U(\mathbf{x})\hat{1} + g_F D_{FS} \mathbf{B}_{eff}(\mathbf{x})\hat{F}$$

$$U(\mathbf{x}) = U_0 |\boldsymbol{\varepsilon}(\mathbf{x})|^2$$

$$\mathbf{B}_{eff} = U_0 \frac{i}{2\hbar} \{ \boldsymbol{\varepsilon}^*(\mathbf{x}) \times \boldsymbol{\varepsilon}(\mathbf{x}) \}$$

$$U_{0} = \frac{\hbar\Gamma^{2}}{12\Delta_{avg}} \left(\frac{I}{I_{S}}\right)$$
$$\Delta_{avg} = \left(\frac{1}{2\Delta_{1/2}} + \frac{1}{\Delta_{3/2}}\right)^{-1}$$
$$D_{FS} = \left(\frac{\Delta_{3/2} - \Delta_{1/2}}{\Delta_{3/2} - \Delta_{1/2}}\right)$$

Delocalization "by Hand"

Shifting is Coherent !

Able to delocalize atoms over up to 7 lattice sites !

O. Mandel et al., Phys. Rev. Lett. 91, 010407 (2003)

Moving Atoms in Harmonic Potentials

Measuring the Excitation Probability vs. Shift Velocity

Population of higher vibrational states (energy bands) can be mapped onto the corresponding Brillouin zones by adiabatically decreasing the lattice potential !

A. Kastberg et al. PRL (1995) M. Greiner et al. PRL (2001)

Start with ground state atoms

Constant Velocity

Stop; measure remaining atoms in ground state

Atoms moved over a distance of approx. 200 nm

Complete Sequence used in the Experiment


```
see A. Widera et al. Science (2009)
```

Dynamical Control of Matter Wave Tunneling

Dynamical Control of Matter Wave Tunneling

$$\hat{H}_{0} = -J\sum_{\langle i,j \rangle} (\hat{c}_{i}^{\dagger} \hat{c}_{j} + \hat{c}_{j}^{\dagger} \hat{c}_{i}) + \frac{U}{2}\sum_{j} \hat{n}_{j}(\hat{n}_{j} - 1)$$

$$+ K\cos(\omega t)\sum_{j} j\hat{n}_{j},$$

$$\int_{J_{ab}} \int_{J_{ab}} \int_{J_{ab}}$$

Lignier et al., PRL (2007), original idea: M. Holthaus (Oldenburg)

Tuning Tunneling

Lignier et al., PRL 99, 220403 (2007)

Many-Body Physics with Ultracold Atoms

www.quantum-munich.de

Entering the Strongly Interacting Regime

Superfluid to Mott Insulator Transition

M.P.A. Fisher et al., PRB 40, 546 (1989); D. Jaksch et al., PRL 81, 3108 (1998) Bosonic Mott Insulators now at: Munich, Mainz, NIST, ETHZ, MIT, Innsbruck, Florence, Garching...

Bose-Hubbard Hamiltonian

Expanding the field operator in the Wannier basis of localized wave functions on each lattice site, yields :

$$\hat{\psi}(\boldsymbol{x}) = \sum_{i} \hat{a}_{i} w(\boldsymbol{x} - \boldsymbol{x}_{i})$$

Bose-Hubbard Hamiltonian

$$H = -J\sum_{\langle i,j\rangle} \hat{a}_i^{\dagger} \hat{a}_j + \sum_i \varepsilon_i \hat{n}_i + \frac{1}{2}U\sum_i \hat{n}_i(\hat{n}_i - 1)$$

Tunnelmatrix element/Hopping element

Onsite interaction matrix element

$$J = -\int d^3x w(\mathbf{x} - \mathbf{x}_i) \left(-\frac{\hbar^2}{2m} \Delta + V_{lat}(\mathbf{x}) \right) w(\mathbf{x} - \mathbf{x}_j)$$

$$U = \frac{4\pi\hbar^2 a}{m} \int d^3x |w(\mathbf{x})|^4$$

M.P.A. Fisher et al., PRB 40, 546 (1989); D. Jaksch et al., PRL 81, 3108 (1998) Mott Insulators now at: NIST, ETHZ, MIT, Innsbruck, Florence, Garching...

The Simplest Possible "Lattice": 2 Atoms in a Double Well

Average atom number per site:

Average onsite Interaction per site:

Superfluid Limit

$$H = -J\sum_{i,j} \hat{a}_{i}^{\dagger} \hat{a}_{j} + \frac{1}{2}U\sum_{i} \hat{n}_{i}(\hat{n}_{i} - 1)$$

Atoms are delocalized over the entire lattice ! Macroscopic wave function describes this state very well.

$$\left|\Psi_{SF}\right\rangle_{U=0} = \left(\sum_{i=1}^{M} \hat{a}_{i}^{\dagger}\right)^{N} \left|0\right\rangle$$

Poissonian atom number distribution per lattice site

 $\langle \hat{a}_i \rangle_i \neq 0$

"Atomic Limit" of a Mott-Insulator

$$H = -J\sum_{i,j} \hat{a}_{i}^{\dagger} \hat{a}_{j} + \frac{1}{2}U\sum_{i} \hat{n}_{i}(\hat{n}_{i} - 1)$$

Atoms are completely localized to lattice sites !

$$|\Psi_{Mott}\rangle_{J=0} = \prod_{i=1}^{M} \left(\hat{a}_{i}^{\dagger}\right)^{n} |0\rangle$$

 $\langle \hat{a}_i \rangle_i = 0$

Quantum Phase Transition (QPT) from a Superfluid to a Mott-Insulator

At the critical point g_c the system will undergo a phase transition from a superfluid to an insulator !

This phase transition occurs even at T=0 and is driven by quantum fluctuations !

Characteristic for a QPT

- Excitation spectrum is dramatically modified at the critical point.
- U/J < g_c (Superfluid regime) Excitation spectrum is gapless
- $U/J > g_c$ (Mott-Insulator regime) Excitation spectrum is gapped

Critical ratio for:

see Subir Sachdev, Quantum Phase Transitions, Cambridge University Press

Superfluid – Mott-Insulator Phase Diagram

Jaksch et al. PRL 81, 3108 (1998)

For an inhomogeneous system an effective local chemical potential can be introduced

$$\mu_{loc} = \mu - \varepsilon_i$$

Ground State of an Inhomogeneous System

From Jaksch et al. PRL 81, 3108 (1998)

From M. Niemeyer and H. Monien (private communication)

Momentum Distribution for Different Potential Depths

0 E_{recoil}

22 E_{recoil}

Spin Changing Collisions

www.quantum-munich.de

Spin Changing Collisions

Spin Changing Collisions in an Optical Lattice

120

AC-"Stark" shift control of the resonance frequency

Spin-I two-level system at zero magnetic field

H. Pu and P. Meystre PRL 2000 and Duan, Sorensen, Cirac, Zoller PRL 2000 Detuning $\delta_{\textbf{0}}$ is present even at zero magnetic field

Energy shift due to microwave field can bring levels into resonance.

AC-Stark shift control of the resonance frequency

AC-Stark shift control of the resonance frequency

Amplitude decrease due to single site spectators

Quantum Spin Oscillations as Non-Destructive Probe of Atom Number Statistics

Classical field (mean field) limit (continuous frequencies)

 $\Omega(n) \square c_2 n$

Quantum limit (discrete frequencies)

$$\boldsymbol{\Omega}_{N_{at}} = \boldsymbol{\Omega}_{0} \sqrt{N_{at} \left(N_{at} - 1\right)}$$

$$\Omega_2 = \sqrt{2}\Omega_0 \quad \Omega_3 = \sqrt{6}\Omega_0 \quad \Omega_4 = \sqrt{12}\Omega_0 \quad \bullet \quad \bullet$$

Leads to quantum dynamics beyond mean field! Collapse & Revivals, Cat states, etc.

Cf. Work of L. You, J. Ho,...

 $\begin{array}{l} \textbf{Amplitude of Spin-Changing}\\ \textbf{Oscillations at Freq } \Omega_{\textit{Nat}} \end{array}$

Number of sites with N_{at} atoms

Resembles exp. in Cavity QED to reveal photon number statistics (Haroche, Walther) see also work of G. Campbell et al. (MIT)

Single Atom Detection in a Lattice

S. Kuhr, J. Sherson, Ch. Weitenberg, M. Endres, M. Cheneau, T. Fukuhara, P. Schauss

Sherson et al. Nature 467, 68 (2010), see also Bakr et al. Nature (2009) & Bakr et al. Science (2010)

www.quantum-munich.de

Measuring a Quantum System

 $\Psi(\mathbf{x})$ wave function $|\Psi(\mathbf{x})|^2$ probability distribution

averaging over single-particle measurements, we obtain $|\Psi(x)|^2$

For many-body system: need access to single snapshots of the many-particle system!

Correlated 2D Quantum Liquid

 $\Psi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_N)$ $|\Psi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_N)|^2$

State of the Art

David Weiss, Pennsylvania State University Nature Physics 3, 556 (2007)

fluorescence imaging

Herwig Ott, Mainz University Phys. Rev. Lett. 103, 080404 (2009)

electron microscopy

Markus Greiner, Harvard *Natur*e 462, 74 (2009)

fluorescence imaging

Experimental Setup

Imaging Resolution: Definitions

Resolution by the criteria for NA=0.68 and λ = 780 nm. Lattice spacing is **532 nm**

But: we know the lattice structure! Only need to reconstruct configuration on lattice.

Parity projection

measured occupation: $n_{det} = \text{mod}_2 n$ measured variance: $\sigma_{det}^2 = \langle n_{det}^2 \rangle - \langle n_{det} \rangle^2$ parity projection $\Rightarrow \langle n_{det}^2 \rangle = \langle n_{det} \rangle$

see also E. Kapit & E. Mueller, Phys. Rev. A 82, 013644 (2010)

Parity projection

Weakly interacting BEC

$$|\alpha\rangle = e^{-|\alpha^2|/2} \sum_n \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

Coherent State

$$p_n = \frac{e^{-\bar{n}}\bar{n}^n}{n!}$$

On-Site Poissonian atom number distribution

Measured density of a quasi-BEC

$$\overline{n}_{\text{det}} = \sum_{n} p_n \operatorname{mod}_2 n = \sum_{n \text{ odd}} p_n = \frac{1}{2} \left(1 - e^{-2\overline{n}} \right)$$

Reconstruction of site occupation

In-Situ Imaging of a Mott Insulator

Sherson et al. Nature **467**, 68 (2010), see also Bakr et al. Nature (2009) & Bakr et al. Science (2010)

www.quantum-munich.de

Mott Insulators

Bose-Hubbard Phase Diagram

M.P.A. Fisher et al. PRB **40**, 546 (1989) D. Jaksch et al. PRL **81**, 3108 (1998)

Inhomogeneous system: effective local chemical potential

$$\mu_{loc} = \mu - \varepsilon_i$$

In-situ observation of a Mott insulator

20 µm

Raw picture

Single Atoms

b d a С e g h K AX Reconstructed Mott isolators BEC Increasing atom number for the Mott insulators: U/J ~ 300 (critical U/J \sim 16) only thermal fluctuations

Images of Mott Insulators

Reconstructed Atom Distribution

BEC

n=I Mott Insulator n=1 & n=2 Mott Insulator

J. Sherson et al. Nature 467, 68 (2010)

Analysis of the site occupancy

"Melting" of a Mott insulator

T = 0.17(1) U/kB $\mu = 2.08(4) U$

T = 0.20(2) U/kB $\mu = 2.10(5) U$

T = 0.25(2) U/kB $\mu = 2.06(7) U$

Single Site Addressing

Ch. Weitenberg et al., Nature 471, 319-324 (2011)

Addressing

Overview/Requirements

We want: • Single Site resolution in 2D (sub-lattice resolution)

- Single Atom sensitivity
- Coherent control single atom

In Degenerate MI samples (short lattice spacing)

idea: localized differential Stark shift+Microwave

D.S. Weiss et al., PRA **70**, 040302 (2004), Zhang et al., PRA **74**, 042316 (2006)

Atoms are pulled out of sites by focussed dipole trap beam!

'Vacuum Cleaner Mode'

Addressing

Sucking Out Atoms

Coherent Addressing of Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

$$\frac{(2,-2)}{(1,-1)}$$
 (2,-2)
(1,-1)

Coherent Spin Flips - Negative Imaging

Addressing

Single Line

Single Line

Three Line

7x7 Square

Coherent Addressing of Atoms Imaging

Addressing

 \bigcirc F=I,m_F=-I Atoms \bigcirc F=2,m_F=-2 Atoms

Inverting population allows to image addressed atoms directly

Addressing

Coherent Spin Flips - Positive Imaging

Ch. Weitenberg et al., Nature 471, 319-324 (2011)

Addressing

Addressing Fidelity

Tunneling of a Single Atom

$$H = -J^{(0)} \sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \sum_i \frac{1}{2} m \omega^2 a_{\text{lat}}^2 i^2 \hat{n}_i$$

