Dirk Bouwmeester $|\Psi\rangle = \alpha |UCSB\rangle + \beta |Leiden\rangle$

Glasgow, August 1, 2011

Quantum Optics Solid-State Cavity QED

Lecture 1

Quantum Entanglement, Entangled Photons, Quantum Cryptography, Hardy's Thought Experiment, Teleportation,

Quantum Optics Solid-State Cavity QED

Lecture 1

Quantum Entanglement, Entangled Photons, Quantum Cryptography, Hardy's Thought Experiment, Teleportation, Quantum Dots, Photonic Crystals, Micropillars

Macroscopic Quantum Superpositions

Lecture 2

Penrose's Arguments, Quantum Decoherence, Optical Cooling, Knots of Light

4.560.000.000 years

250 years

250 years

 $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\mathcal{E}_0}$ $\vec{\nabla} \times \vec{E} = 0$

18 Sept 1820 Ampère $\vec{\nabla} \cdot \vec{B} = 0$

 $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$

21April 1820, Ørsted

1861

Experiment and Theory!!

Albert Einstein: "The special theory of relativity owes its origins to Maxwell's equations of the electromagnetic field."

Max Planck: "Maxwell achieved greatness unequalled"

Entanglement

Einstein: "The Lord is subtle but not malicious." "God does not play dice."

Bohr: "Please stop telling God what to do."

Cryptography

Scytale: Spartans, 400 B.C.

Phase Matching and Entanglement

Degenerate case: $\omega_1 = \omega_2 = \omega_P/2$

Birefringence needed for phase matching

Teleportation Scheme

Basis of Bell States
$$|\Psi_{12}^{\pm}\rangle = \sqrt{\frac{1}{2}} (|\uparrow_1\rangle| \leftrightarrow_2\rangle \pm |\leftrightarrow_1\rangle| \uparrow_2\rangle)$$
$$|\Phi_{12}^{\pm}\rangle = \sqrt{\frac{1}{2}} (|\uparrow_1\rangle| \uparrow_2\rangle \pm |\leftrightarrow_1\rangle| \leftrightarrow_2\rangle)$$

$$\begin{split} |\Psi_{123}\rangle = |\Psi_{1}\rangle \otimes |\Psi_{23}\rangle &= \frac{1}{2} \left[|\Psi_{12}^{-}\rangle (-\alpha |\downarrow_{3}\rangle - \beta |\leftrightarrow_{3}\rangle) + \right] \\ & |\Psi_{12}^{+}\rangle (-\alpha |\downarrow_{3}\rangle + \beta |\leftrightarrow_{3}\rangle) + \\ & |\Phi_{12}^{-}\rangle (-\alpha |\leftrightarrow_{3}\rangle + \beta |\downarrow_{3}\rangle) + \\ & |\Phi_{12}^{-}\rangle (-\alpha |\leftrightarrow_{3}\rangle - \beta |\downarrow_{3}\rangle) + \\ \end{split}$$

Known unitary transformation of particle 3 gives the initial state of particle 1:

$$|\Psi_{3}\rangle \stackrel{U}{\Rightarrow} |\Psi_{1}\rangle$$

2-Photon Interference

Nature <u>390</u>, 575 (1997) Phys. Rev. Lett. <u>80</u>, 3891 (1998)

Quantum Internet

Quantum Computation

Bit 0 or 1 \rightarrow Quantum bit $|\Psi\rangle_1 = \alpha |0\rangle_1 + \beta |1\rangle_1$ $0110100 \rightarrow |\Psi\rangle_1 \otimes |\Psi\rangle_2 \otimes |\Psi\rangle_3 \otimes |\Psi\rangle_4 \otimes \cdots$ CNOT \rightarrow Quantum CNOT (approach 1) **Generate Cluster Entangled State** (approach 2)

Self-assembled Quantum Dots

Molecular Beam Epitaxy (MBE) grown quantum dots (Petroff)

Quantum dots – artificial atoms

Ensemble emission

Self-assembled GaAs/InGaAs QUANTUM DOTS

add extra electron to QD

Spin of extra electron is qubit (0.1ms?) coupled to excitons (gates ns)

Fidelities good (~0.8)

Probability of success 10⁻⁸

Nature 449, 68 (2007); PRL 100, 150404 (2008) Monroe group

Electron spins coupled to photons

using micropillars

Oxide apertured micropillars

M. Pelton et al., PRL 2002

N. G. Stoltz, et al., Appl. Phys. Lett. **87**, 031105 (2005)

200 μm

Individual quantum dots

InAs quantum dots embedded in GaAs matrix

1µm x 1µm AFM

- Dot size: 10-20 nm
- Emission: 900-950 nm
- Density gradient

Jaynes-Cummings Hamiltonian

$$\mathcal{H} = \frac{1}{2}\hbar\omega_a\sigma_z + \hbar\omega_c a^{\dagger}a + \hbar g \left(\sigma_+ a + \sigma_- a^{\dagger}\right)$$
$$\hbar\omega_a = E_a - E_b \qquad \hbar g = \left|\langle \vec{\wp} \cdot \vec{E} \rangle\right|$$
$$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad \sigma_+ = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad \sigma_- = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

$$|E_{max}| = \sqrt{\frac{\hbar\omega_c}{2n_{eff}^2\epsilon_o V_{eff}}}. \qquad g \sim \sqrt{\sqrt{V_{eff}}}$$

$$V_{eff} = \frac{1}{Max[n^2(\vec{r})|\vec{E}(\vec{r})|^2]} \int d^3\vec{r} \, n^2(\vec{r})|\vec{E}(\vec{r})|^2$$

$$\mathcal{H} = \frac{1}{2}\hbar\omega_a\sigma_z + \hbar\omega_c a^{\dagger}a + \hbar g\left(\sigma_+ a + \sigma_- a^{\dagger}\right)$$
 Dressed states

 $Q = \omega_c/2\kappa$, with κ the electric field amplitude loss rate, γ is dipole decay rate

 $Q = \omega_c/2\kappa$, with κ the electric field amplitude loss rate, γ is dipole decay rate

Weak coupling ($\kappa >> g >> \gamma$)

Purcell Factor

$$F_p = \frac{\Gamma_{cav}}{\Gamma_o} = \frac{3}{4\pi^2} \frac{Q}{V_{eff}} \left(\frac{\lambda}{n}\right)^3$$

Interaction with weak probe field: Input-Output formalism Collett and Gardiner, Physical Review A **31**, 3761 (1985).

Plots of various detuning of two-level system form cavity resonance

Stark shift QD frequency tuning

Reflection Spectroscopy

Jaynes-Cummings model

$$R(\omega) = \left| 1 - \frac{\kappa (\gamma - i(\mu \omega - \omega_{QD}))}{(\gamma - i(\omega - \omega_{QD})\kappa) - i(\omega - \omega_{c}) + g^{2}} \right|^{2}$$

 κ is cavity field decay rate:

 $\kappa = 24.1 \mu \text{eV}$, corresponding to Q = 27,000,

g is emitter-cavity coupling

 $g = 9.7 \mu \,\mathrm{eV},$

 γ is emitter decay rate:

 $\gamma = 1.9 \mu \,\mathrm{eV},$

 $\frac{g}{\kappa} = 0.40$, deep in Purcell (weak-coupling) regime,

 $\frac{g}{\kappa} > 0.5$ is strong coupling

96% mode matched!!! Ideal for hybrid QIP schemes PRL Rakher et al. '09

Mode polarization tuning

Fine tuning by hole burningFibre coupling (two sided)
Birefringence fine tuning by hole burning

APL 95, 251104 (2009)

Prediction: For pol. deg. cavity and a X⁻ charged QD

Prediction: For polarization generate cavity and a X⁻ charged QD

Quantum Computation

Cluster Entangled State

Photonic Crystals

Q dot L3 photonic crystal cavity coupling

Size and position optimized for high **Q** and high **n**_{eff}

Field stays away from interface

Measured Q ~ 18000 GaAs !

Mode volume Effective index Q-factor (in theory) V ~ 0.68(λ/n)³ n_{eff} ~ 2.9 > 200000

Low density of QDs

QD density 5-50 μm⁻² from AFM

Mode volume from FDTD

QDs are spectrally distributed over 50-100 nm

Sharp exciton resonance

Chance of ~ 1% for both spatial and spectral coupling

Only **1-3 QDs** are within the mode !

No pronounced coupling is expected

Lasing threshold behavior

Vanishing-threshold

Linewidth narrowing

Single QDs are broadband emitters

- charged states X⁺, X⁰, X⁻
- bi- and multi Xs
- Extended state

acoustic phonon coupling

QD interaction with surrounding matrix provides **indirect** and **efficient** coupling

(our) single QDs are broadband emitters

Proof lasing, Fano peak

Strong coupling by optical positioning (10nm resolution in positioning PC)

Strong coupling by optical positioning (10nm resolution in positioning PC)

APL '09 Thon et al.

NV centers in diamond and photonic crystals

van der Sar et al. APL 2011