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Homodyne detection

The local oscillator

A beam splitter of transmittance η, described by he transformation

â→ √ηâ +
√

1− ηô,

ô → √ηô −
√

1− ηâ

For homodyne detection, ô is a very strong coherent field modelled as
ô = γ/

√
1− η + ν̂,

ν̂ is a continuum field that satisfies [ν̂(t), ν̂†(t ′)] = δ(t − t ′) and acts on
the vacuum state.

For η very close to one,
â→ â + γ,
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â→ â + γ,

G J Milburn (2008) Quantum measurement and control II. 4 / 53



Homodyne detection

The local oscillator

Let γ be real. The rate of photodetections:

E[dN(t)/dt] = κTr[(γ2 + γx̂ + â†â)ρI (t)].

where we define two system quadrature phase operators

x̂ = â + â† ; ŷ = −i(â− â†).

In the limit γ >>
〈
â†â
〉
, the rate is a large constant term plus a term

proportional to x̂ , plus a small term.
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Homodyne detection

The continuum limit.

In the limit that |γ|2 >> 〈a†a〉, the photocount is mostly due to the LO
photons.

Approximate the photocurrent by a continuous function of time, and
derive a smooth evolution equation for the system.

Key idea: approximate a Poisson process with large rate by a Gaussian
stochastic process for the number of counts δN(t) in time δt.
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Homodyne detection

The continuum limit.

substitute δN as a Gaussian random variable and keeping only the lowest
order terms in γ−1/2 and letting δt → dt yields the SME:

dρJ(t) = −i [Ĥ, ρJ(t)]dt + κdtD[â]ρJ(t) +
√
κdW (t)H[â]ρJ(t),

where the J subscript refers to a homodyne conditioning (see next slide)

dW (t) is an infinitesimal Wiener increment satisfying

dW (t)2 = dt,

E [dW (t)] = 0.

That is, the jump conditional evolution has been replaced by diffusive
evolution.
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Homodyne detection

The continuum limit.

Exercise: Consider a Poisson process, dN(t), defined by

E [dN(t)] = κdt

The probability to detect m photons in time interval δt is given by

Pr(m) =
(κδt)m

m!
e−κδt

which has a mean of κδt, which also equals the variance. Define the
zero-mean random variable x = m − κδt. Using Stirling’s formula show
that, for κδt >> 1, the probability distribution for x may be well
approximated by the Gaussian

P(x) = (2πκδt)−1/2e−
(x−κδt)2

2κδt
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Homodyne detection

The continuum limit.

The γ →∞ also changes the point process photocount into a continuous
photocurrent with white noise.

Removing the constant local oscillator contribution gives

Jhom(t) ≡ lim
γ→∞

δN(t)− κγ2δt

γδt
= κ〈x̂〉J(t) +

√
κξ(t),

where ξ(t) = dW (t)/dt.
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Homodyne detection

Homodyne photocurrent correlations.

The mean is
E[Jhom(t)] = κTr[ρ(t)x̂ ],

where x̂ = â + â† as usual, and ρ(t) is assumed given.

The autocorrelation function is defined as

F
(1)
hom(t, t + τ) = E[Jhom(t + τ)Jhom(t)].

this function is related to Glauber’s first-order coherence function.

Glauber, The quantum theory of optical coherence, Phys. Rev. 130, 2529, (1963).
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Homodyne detection

Homodyne photocurrent correlations.

Using the Itô rules for dW (t)

F
(1)
hom(t, t + τ) = κ2Tr

[
x̂eLτ

(
âρ(t) + ρ(t)â†

)]
+ κδ(τ).
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Homodyne detection

Homodyne photocurrent correlations.

Measure time in units of κ−1

Experimentally, it is more common to use the spectrum of the homodyne
photocurrent,

S(ω) = lim
t→∞

∫ ∞
−∞

dτF
(1)
hom(t, t + τ)e−iωτ

= 1 +

∫ ∞
−∞

dτe−iωτTr
[
x̂eLτ

(
âρss + ρssâ

†
)]
.

The unit contribution is known as the local oscillator shot-noise or vacuum
noise because it is present even when there is no light from the system.
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Homodyne mediated direct feedback.

Homodyne mediated feedback.

SME for homodyne detection of efficiency η,

dρJ(t) = −i [Ĥ, ρJ(t)]dt + dtD[â]ρJ(t) +
√
ηdW (t)H[â]ρJ(t).

The homodyne photocurrent, normalized so that the deterministic part
does not depend on the efficiency,

Jhom(t) = 〈x̂〉J (t) + ξ(t)/
√
η,

where ξ(t) = dW (t)/dt and x̂ = â + â†.

Note: from now on we measure time in units of κ−1.
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Homodyne mediated direct feedback.

Homodyne mediated feedback.

[ρ̇J(t)]fb = Jhom(t − τ)KρJ(t),

But a homodyne current may be negative because the constant local
oscillator background has been subtracted, so the feedback superoperator
K must be such as to give valid evolution irrespective of the sign of time.

It must give reversible evolution with

Kρ ≡ −i [F̂ , ρ]

for some Hermitian operator F̂ .
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Homodyne mediated direct feedback.

Homodyne mediated feedback: the outside view.

Average over all measurement records with feedback to give the homodyne
feedback master equation

ρ̇ = −i [Ĥ, ρ] +D[â]ρ− i [F̂ , âρ+ ρâ†] +
1

η
D[F̂ ]ρ.

The first feedback term, linear in F̂ , is the desired effect of the feedback
which would dominate in the classical regime.

The second feedback term causes diffusion in the variable conjugate to F̂ .
It can be attributed to the noise in the measurement. The lower the
efficiency, the more noise.
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Homodyne mediated direct feedback.

Homodyne mediated feedback.

The homodyne feedback master equation can be rewritten in the Lindblad
form

ρ̇ = −i
[
Ĥ + 1

2 (â†F̂ + F̂ â), ρ
]

+D[â− i F̂ ]ρ+
1− η
η
D[F̂ ]ρ ≡ Lρ.
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Homodyne mediated direct feedback.

Homodyne mediated feedback.

The two-time correlation function ( η = 1) of the current is

E[Jhom(t ′)Jhom(t)] = Tr
{

(â + â†)eL(t′−t)[(â− i F̂ )ρ(t) + H.c.]
}

+ δ(τ).

The feedback affects the term in square brackets, as well as the evolution
by L for time t ′ − t so the in-loop photocurrent may have a sub-shot-noise
spectrum, even if the light in the cavity dynamics is classical.

The feedback will not produce nonclassical dynamics for a damped
harmonic oscillator if F̂ is a Hamiltonian corresponding to linear optical
processes (quadratic in a, a†).
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Homodyne mediated direct feedback.

A linear quantum system.

Exercise:Show that, for the ground state of a simple harmonic oscillator,
the variance of x̂ = a + a†, defined by

V = 〈x̂2〉 − 〈x̂〉2

is unity

States for which V < 1 are called quadrature squeezed states.

Exercise:Consider the state |r〉 = Ŝ |0〉 where the unitary transformation Ŝ
is defined by

Ŝ = exp[
r

2
(a2 − a†2)]

Show that for this state the variance in x̂ is

V = e−2r

Find the variance in the canonically conjugate operator ŷ = −i(a− a†)
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Homodyne mediated direct feedback.

A linear quantum system.

A single mode cavity, with damping, driving and parametric amplification.

HI = −i(ε0 + η(t))(a− a†)− χ

4
(a2 − a† 2)

where η(t) is a delta correlated fluctuating force term,

E(η(t + τ)η(t)) = Lδ(τ)

ρ̇ = D[â]ρ+ 1
4 LD[â† − â]ρ+ 1

4χ[â2 − â†2, ρ] ≡ L0ρ,
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Homodyne mediated direct feedback.

A linear quantum system.

The mean and variance of x̂ = a + a†

d 〈x̂〉
dt

= −k 〈x̂〉 ,

dV

dt
= −2kV + D.

For a stable system with k > 0, there is a steady state with 〈x〉 = 0 and

V =
D

2k
.

Exercise Show that for the particular master equation above (the
properties of which will be denoted by the subscript 0) these equations
hold, with

k0 = 1
2 (1 + χ),

D0 = 1 + L.
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Homodyne mediated direct feedback.

A linear quantum system.

Here, V0 = (1 + l)/(1 + χ). If this is less than unity, the system exhibits
squeezing of the x quadrature.

Define the the normally ordered variance

U ≡
〈

â†â† + 2â†â + ââ
〉
−
〈

â† + â
〉2
,

Here

U0 =
l − χ
1 + χ

.

If the variance in the y quadrature does not become unbounded, then the
maximum value for χ is one. (Show this)

At this value, U0 = −1/2 when the x-diffusion rate l = 0, which is half of
the theoretical minimum of U0 = −1.
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Continuous error correction by feedback.

A linear quantum system with feedback.

Add feedback to try to reduce the fluctuations in x .

F̂ = −λŷ/2.

a translation in the negative x direction for λ > 0.

ρ̇ = L0ρ+
λ

2
[â− â†, âρ+ ρâ†] +

λ2

4η
D[â− â†]ρ.

η is the proportion of output light used in the feedback loop, multiplied by
the efficiency of the detection.

k = k0 + λ,

D = D0 + 2λ+ λ2/η.
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Continuous error correction by feedback.

A linear quantum system with feedback.

If λ+ k0 > 0, there will exist a stable Gaussian solution.

The new intracavity squeezing parameter is

Uλ = (k0 + λ)−1

(
k0U0 +

λ2

2η

)
.

Uλ can only be negative if U0 is: feedback cannot produce squeezing.

Minimizing Uλ with respect to λ one finds

Umin = η−1

(
−k0 +

√
k2

0 + 2ηk0U0

)
,

when

λ = −k0 +
√

k2
0 + 2ηk0U0 .

Note that this λ has the same sign as U0.
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Continuous error correction by feedback.

A linear quantum system with feedback.

If system produces squeezed light, then to enhance the squeezing, add a
force which displaces the state in the direction of the difference between
the measured photocurrent and the desired mean photocurrent.

This positive feedback is the opposite of what would be expected
classically, and can be attributed to the effect of homodyne measurement
on squeezed states.

The best intracavity squeezing will be when η = 1, in which case the
intracavity squeezing can be simply expressed as

Umin = k0

(
−1 +

√
1 + R0

)
.
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Continuous error correction by feedback.

Errors, noise and decoherence.

Bit flip errors on qubits.

X |0〉 = |1〉, X |1〉 = |0〉

X is a Pauli operator, σx .

Phase flip errors on qubits.

Z (|0〉+ |1〉) = |0〉 − |1〉

Z is a Pauli operator, σz
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Continuous error correction by feedback.

Quantum Markov process.

Assume errors act randomly in time: quantum Poisson process.
Quantum Markov process

dρ(t)

dt
= γ(Xρ(t)X − ρ(t))γ ≡ D[X ]ρ
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Continuous error correction by feedback.

Phase flip errors.

Poisson process at rate κ

dρ

dt
= κ(ZρZ − ρ) ≡ κD[Z ]ρ
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Continuous error correction by feedback.

Quantum information and noise.

Can we protect quantum information from classical noise ?
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Continuous error correction by feedback.

Continuous bit flip errors.

How to correct for a single bit flip ?
Classical: bit flip errors can be corrected by a simple repetition code:
1→ 111 , 0→ 000
examine each bit, then take a majority vote.
Quantum code ?
Need to protect an arbitrary superposition state |ψ〉 = α|0〉+ β|1〉.
Problem: quantum no-cloning theorem.
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Continuous error correction by feedback.

Quantum bit flip code.

Solution: use entangled states of three physical qubits !

|0〉L = |0〉|0〉|0〉 ≡ |000〉
|1〉L = |1〉|1〉|1〉 ≡ |111〉

Encode using two CNOT gates:

(α|0〉+ β|1〉)|0〉|0〉 → α|0〉L + β|1〉L
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Continuous error correction by feedback.

Quantum bit flip correction.

Example: suppose first bit flips.

α|000〉+ β|111〉 → α|100〉+ β|011〉

Recall that

Z |0〉 = |0〉
Z |1〉 = −|1〉.

ZZI IZZ Error Correcting unitary

+1 +1 None None
-1 +1 on qubit 1 XII
+1 -1 on qubit 3 IIX
-1 -1 on qubit 2 IXI
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Continuous error correction by feedback.

Summary of bit flip correction.

code logical qubit as three physical qubits

measure ZZI and IZZ instantaneously with perfect accuracy

apply a unitary correction operation

Can this work as a closed loop process, with continuous measurement and
feedback ?
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Continuous error correction by feedback.

Feedback protection of quantum information.

example: can we protect a memory from accidental readout?

M1 M2

control circuit

gate control circuit

S1 S2

readout readout

Q1 Q2
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Continuous error correction by feedback.

Feedback protection of quantum information.

Three qubit code for bit flip errors.

α|0〉L + β|1〉L = α|000〉+ β|111〉

Need to measure: ZZI , IZZ .
Corrections:XII ,XIX , IIX
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Continuous error correction by feedback.

Feedback protection of quantum information.

error
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Continuous error correction by feedback.

Feedback protection of quantum information.

meas
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Continuous error correction by feedback.

Feedback protection of quantum information.

condition

H[A] depends on ρc(t) → non-linear dynamics.
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Continuous error correction by feedback.

Feedback protection of quantum information.

observed processes

G J Milburn (2008) Quantum measurement and control II. 38 / 53



Continuous error correction by feedback.

Error signal.

Example: bit flip error on first qubit.

1.0

-1.0

1.0

-1.0

dQ
dt
__1

dQ
dt
__2

t

t
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Continuous error correction by feedback.

Error signal processing.

Smooth observed measurement process.

Ri (t) =
1

N

∫ t

t−T
e−r(t−t′)dQi (t ′) i = 1, 2

r →controls smoothing (filter spectral width).

1 If R1(t) < 0 and R2(t) > 0, apply XII .

2 If R1(t) > 0 and R2(t) < 0, apply IIX .

3 If R1(t) < 0 and R2(t) < 0, apply IXI .

4 If R1(t) > 0 and R2(t) > 0, do not apply any feedback.
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Continuous error correction by feedback.

Feedback process.

Control hamiltonian terms:

dρc(t) = . . .− iλ(G1(t)[XII , ρc(t)] + G2(t)[IXI , ρc(t)]

+G3(t)[IIX , ρc(t)])dt

λ strength of the feedback

G1(t) =

{
R1(t) if R1(t) < 0 and R2(t) > 0
0 otherwise

G2(t) =

{
R2(t) if R1(t) > 0 and R2(t) < 0
0 otherwise

G3(t) =

{
R1(t) if R1(t) < 0 and R2(t) < 0
0 otherwise
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Continuous error correction by feedback.

Performance measure.

Fidelity, F , survival probability of initial state versus t.
Compute fidelity for a single simulation of conditional dynamics.
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Continuous error correction by feedback.

Performance measure.
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Continuous error correction by feedback.

Feedback creation of entanglement.

Can we correct for detected ’jump’ errors?

See: Quantum error correction for continuously detected errors, Ahn,
Wiseman, GJM, Phys. Rev. A 67, 052310 (2003).
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Feedback creation of entanglement.

Feedback creation of entanglement.

Measurement on multiple qubits can create entanglement.

Can measurement plus feedback create entangled steady states?
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Feedback creation of entanglement.

The Hamiltonian

Dispersive level shifts in a cavity containing a qubit.

Effective Hamiltonian in the interaction picture.

HI = χa†a(|1〉〈1| − |0〉〈0|) ≡ χa†aσz

Conditional frequency shift of cavity.
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Feedback creation of entanglement.

Two qubit case.

Sarovar, Goan, Spiller , GJM, Phys. Rev. A, 72, 062327 (2005)*
Two CPB qubits, dispersive limit.

HI = 2χJza†a + χ(σ+
1 σ
−
2 + σ−2 σ

+
1 )

where Jz = σz1 + σz2.

e−iθJza
†a(|00 > +|01 > +|10 > +|11 >)|α〉

= |00〉|αe iθ〉+ |11〉|αe−iθ〉+ (|10〉+ |01〉)|α〉

Measure phase of field by homodyne detection.

* See also ”Tunable joint measurements in the dispersive regime of cavity QED”, Lalumière, Gambetta, Blais arXiv:0911.5322
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Feedback creation of entanglement.

CQED as a qubit bus mode.

|00>

|11>

|01>+|10>

X

Y

Nemoto & Munro. PRL 2004.
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Feedback creation of entanglement.

Measurement induced entanglement.

Add coherent driving

HI = ε(a + a†) + 2χJza†a + χ(σ+
1 σ
−
2 + σ−2 σ

+
1 )

And cavity decay

dρ

dt
= −i [HI , ρ] + κ

(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
and monitor the output field via homodyne detection.

Need ε ∼ κ >> χ, and strong feedback, λ > κ
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Feedback creation of entanglement.

Continuous conditional evolution.

V(t)

driving

local

oscillator

i(t): classical signal out

t

The homodyne current for quantum limited detection obeys

dI (t) = κ〈a + a†〉+
√
κdW (t)

Assume the only source of noise in the signal comes from the quantum
source.

What is the conditional state of the source, conditioned on a particular
current history, i(t).
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Feedback creation of entanglement.

Feedback creation of entanglement.

V(t)

driving

local

oscillator

feedback to qubit bias

signa processing

Feedback homodyne current from SET to change bias conditions of the
CPB.
Process signal by low-pass filter:

R(t) =
1

N

∫ t

t−T
e−γ(t−t′)dI (t ′)

Add control Hamiltonian

HFB = λR(t)3(σx1 + σx2)
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Feedback creation of entanglement.

Feedback creation of entanglement.

d |ψc(t)〉 = [−iHI − iHFB(t)− κa†a]|ψc(t)〉dt + dI (t) a|ψc(t)〉

evolution of entanglement

average over 300 trajectories.
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Feedback creation of entanglement.

Feedback creation of entanglement.

fidelity for |01>+|10>

99% of trajectories converge to target state.

Sarovar et al., Phys. Rev. A 72, 062327 (2005)
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