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Chapter 1

Classical information

1.1 The bit

Let me start my lecture on classical information trying to build an
intuitive understanding of the concept of classical information. A more
quantitative approach will be taken in section 1.2, but for the full blown
mathematical apparatus I have to refer you to textbooks, e.g. [1].

Imagine that you are holding an object, be it an array of cards,
geometric shapes or a complex molecule and we ask the following ques-
tion: what is the information content of this object? To answer this
question, we introduce another party, say a friend, who shares some
background knowledge with us (e.g. the same language or other sets
of prior agreements that make communication possible at all), but who
does not know the state of the object. We define the information con-
tent of the object as the size of the set of instructions that our friend
requires to be able to identify the object, or better the state of the
object. For example, assume that the object is a spin-up particle and
that we share with the friend the background knowledge that the spin is
oriented either upwards or downwards along the z direction with equal
probability (see fig. 1.1 for a slightly more involved example). In this
case, the only instruction we need to transmit to another party to let
him recreate the state is whether the state is spin-up ↑ or spin-down
↓. This example shows that in some cases the instruction transmitted
to our friend is just a choice between two alternatives. More generally,
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Figure 1.1: An example for a decision tree. Two binary choices have to
be made to identify the shape (triangle or square) and the orientation
(horizontal or rotated). In sending with equal probability one of the
four objects, one therefore transmits 2 bits of information.

we can reduce a complicated set of instructions to n binary choices. If
that is done we readily get a measure of the information content of the
object by simply counting the number of binary choices. In classical
information theory, a variable which can assume only the values 0 or
1 is called a bit. Instructions to make a binary choice can be given by
transmitting 1 to suggest one of the alternative (say arrow up ↑) and 0
for the other (arrow down ↓).

To sum up, we say that n bits of information can be encoded in
a system when instructions in the form of n binary choices need to
be transmitted to identify or recreate the state of the system. In the
following we will turn this idea into a more precise form.
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1.2 Quantifying classical information

In 1948 Shannon developed a rigorous framework for the description of
information and derived an expression for the information content of the
message which depends on the probability of each letter occurring and
results in the Shannon entropy. We will illustrate Shannon’s reasoning
in the context of the example above. Shannon invoked the law of large
numbers and stated that, if the message is composed of N letters where
N is very large, then the typical messages will be composed of Np1 1’s
and Np0 0’s. For simplicity, we assume that N is 8 and that p1 and
p0 are 1

8
and 7

8
respectively. In this case the typical messages are the

8 possible sequences composed of 8 binary digits of which only one is
equal to 1 (see left side of figure 1.2). As the length of the message

Figure 1.2: The idea behind classical data compression. The most
likely sequences are relabeled using fewer bits while rare sequences are
discarded. The smaller number of bits still allows the reconstruction of
the original sequences with very high probability.

increases (i.e. N gets large) the probability of getting a message which
is all 1’s or any other message that differs significantly from a typical
sequence is negligible so that we can safely ignore them. But how many
distinct typical messages are there? In the previous example the answer
was clear: just 8. In the general case one has to find in how many
ways the Np1 1’s can be arranged in a sequence of N letters? Simple
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combinatorics tells us that the number of distinct typical messages is(
N
Np1

)
=

N !

(Np1)!(Np0)!
(1.1)

and they are all equally likely to occur. Therefore, we can label each of
these possible messages by a binary number. If that is done, the num-
ber of binary digits I we need to label each typical message is equal
to log2

N !
Np1!Np0!

. In the example above each of the 8 typical message
can be labeled by a binary number composed by I = log28 = 3 digits
(see figure 1.2). It therefore makes sense that the number I is also
the number of bits encoded in the message, because Alice can unam-
biguously identify the content of each typical message if Bob sends her
the corresponding binary number, provided they share the background
knowledge on the labeling of the typical messages. All other letters
in the original message are really redundant and do not add any in-
formation! When the message is very long almost any message is a
typical one. Therefore, Alice can reconstruct with arbitrary precision
the original N bits message Bob wanted to send her just by receiving I
bits. In the example above, Alice can compress an 8 bits message down
to 3 bits. Though, the efficiency of this procedure is limited when the
message is only 8 letters long, because the approximation of considering
only typical sequences is not that good. We leave to the reader to show
that the number of bits I contained in a large N -letter message can in
general be written, after using Stirling’s formula, as

I = −N(p1log2p1 + p0log2p0) . (1.2)

If we plug the numbers 1
8

and 7
8

for p0 and p1 respectively in equation
1.2, we find that the information content per symbol I

N
when N is very

large is approximately 0.5436 bits. On the other hand, when the binary
letters 1 and 0 appear with equal probabilities, then compression is not
possible, i.e. the message has no redundancy and each letter of the
message contains one full bit of information per symbol. These results
match nicely the intuitive arguments given above.

Equation 1.2 can easily be generalized to an alphabet of n letters ρi
each occurring with probabilities pi. In this case, the average informa-
tion in bits transmitted per symbol in a message composed of a large
number N of letters is given by the Shannon entropy:
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I

N
= H{pi} = −

n∑
i=1

pilogpi . (1.3)

We remark that the information content of a complicated classical
system composed of a large number N of subsystems each of which
can be in any of n states occurring with probabilities pi is given by
N ×H{pi}.

1.2.1 Classical Correlations

Now that we have a good idea how to quantify classical information,
we can proceed to understand and quantify what classical correlations
are. Most of you will already have a good intuitive feeling about this
because you will have learnt about correlated random variables in your
university studies.

Let us begin by considering two strings of messages with a joint
probability distribution p(x, y) and marginal distributions p(x) =

∑
y p(x, y)

and q(y) =
∑
x p(x, y).

String 1 : 00100010111000101110011000100010110001101000101000

String 2 : 01100111111001101110111101110110110111111011101000

When you look very carefully at the two strings, then you will see that
a ′1′ in string 1 always has a corresponding digit ′1′ in sequence 2.
Therefore clearly the two sequences are correlated: If we look at one
sequence, we learn something about the other.

But how strongly are the two messages correlated? Well, a sensible
measure seems the following. First let us consider message 2 alone. Its
information content is given by H(Y ) = −q(0)logq(0)− q(1)logq(1). If
we read message 1 then we already obtain information about message 2
and the remaining information content will be decreased. This decrease
will depend on which letter we find in message 1 and we have

H(Y |X) =
∑
x

p(x)
∑
y

−p(y|x) log p(y|x)

= −
∑
x,y

p(x)p(y|x) log
p(x, y)

p(x)
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= −
∑
x,y

p(x)p(y|x)(log p(x, y)− log p(x))

= −
∑
x,y

p(x, y) log p(x, y)−
[
−
∑
x

p(x) log p(x)

]
= H(X, Y )−H(X)

The amount of information that we obtain about message 2 on average
is therefore the difference its information content before and after the
measurement of sequence 1, ie

I = H(Y )−H(Y |X) = H(X) +H(Y )−H(X, Y )

This appears like a well motivated correlation measure and is called
the mutual information between the two messages. Its quite satisfy-
ing to see that the mutual information is symmetric with respect to
interchange of X and Y .

Before I move on from here let me consider two examples, one for
fully correlated sequences and one for totally uncorrelated sequences.

Example 1: Consider the sequences with a joint probability distribu-
tion p(0, 0) = 0.5 = p(1, 1) and p(0, 1) = 0 = p(1, 0), ie

String 1 : 001000101110001011100110001000101100011010001

String 2 : 001000101110001011100110001000101100011010001

In this case, reading message 1 already reveals message 2 com-
pletely and therefore it makes sense to say that the two messages
are fully correlated. If we compute the mutual information, then
we indeed find I = 1.

Consider the sequences with a joint probability distribution p(0, 0) = 1
and p(1, 1) = p(0, 1) = 0 = p(1, 0), ie

String 1 : 000000000000000000000000000000000000000000000

String 2 : 000000000000000000000000000000000000000000000

This example is more subtle than it appears. Not so few people
would say that these two sequences are fully correlated, as a ’0’ in
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message 1 always corresponds to a ’0’ in message 2. However, we
have to be careful about this argument. We have defined correla-
tions as the amount of information that we gain about sequence 2
if we measure sequence 1. Now, if we compute what the informa-
tion content of sequence 2 is, then we find that it vanishes. Thats
not surprising, after all, the message seems rather boring as all
the digits are actually the same. After measuring sequence 1 the
information content is still zero. Therefore the correlations be-
tween the two messages are zero and this is indeed the result that
you obtain when you compute the mutual information between
the two sequences.

Before I now move on to discuss quantum information, let me refine
the concept of classical correlations a little bit. This will allows me to
introduce the classical equivalent of teleportation and entanglement.

In fact, there are two forms of classical correlations. Firstly there
are public correlations and there are secret correlations. What is the
difference. Well, imagine parties Alice and Bob talk to each other
publicly and the whenever Alice says ′0′(′1′) then Alice and Bob note
down a ′0′(′1′) in their notebook. Of course everybody has heard their
communication and they also know about their correlations - these
correlations are public. On the other hand Alice and Bob may sit down
together and secretly create a set of two codebooks in which they write
perfectly correlated messages. These correlations are not accessible to
anybody else and they are therefore secret. In fact, these correlations
have a name which is one-time-pad.

Now assume that Alice and Bob are on different sides of the world.
Now I want to show you that Alice and Bob can use these secret cor-
relations to transmit secret messages between each other using only
public communication.

The procedure works as follows (see the figure below). Alice takes
a bit from here message and one bit from her codebook. She adds the
two numbers modulo 2 and sends the result to Bob. He then takes the
fully correlated bit from his codebook and adds it (modulo 2) to the
digit that he has received from Alice. The result is the digit from Alices
original message.
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Message Alice Codebook Alice Transmit Codebook Bob Result Bob
0 0 0 0 0
1 1 0 1 1
1 0 1 0 1
...

...
...

...
...

This is really a secret information transmission, if the digits in Alice and
Bobs codebook are completely random but prefectly correlated. Then
the transmitted bit from Alice to Bob is completely random and not
correlated to Alices message. Note that a full unit of secret correlations
has to be consumed for each classical bit that is to be transmitted. In
fact, this could have been used as an alternative way for defining the
unit of correlations, namely one bit of correlations is that amount of
correlations that allow the secret transmission of one classical bit of
information. We will use this approach lateron to define a unit of en-
tanglement.

Now let us see how we can move all these ideas from the classical
world to the quantum world.

1.3 Quantum bits

Now I will explain how, in close analogy to the classical compression
procedure, an arbitrary quantum state of a composite system comprised
of n 2-level atoms, can be compressed and transmitted by sending a
number m < n of qubits. This procedure defines the use of the qubit
as the unit of quantum information and by analogy with classical data
compression partly justifies the name qubit. I proceed in close mathe-
matical analogy to the classical case studied in section 1.2 and see how
well one can compress quantum states, ie. how many qubits are needed
to describe a quantum state. I first give a simple example, that illus-
trates the key ideas, and then reiterate these ideas in a slightly more
general and formal way.

Quantum data compression: a simple example

Let me begin with the following very simple example, which appears
essentially classical, but displays all the relevant ideas of the more gen-
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eral case. Consider a quantum source that emits two-level systems with
probability p0 = 0.95 in state |0〉 and with probability p1 = 1−p0 = 0.05
in the orthogonal state |1〉. Our knowledge of this preparation proce-
dure for a single qubit is represented by the density operator ρ̂ given
by

ρ̂ =
6

7
|0〉〈0|+ 1

7
|1〉〈1| (1.4)

Note, that the two states generated by the oven have been chosen
to be orthogonal for simplicity. We will consider the more general case
later. For the time being, let us consider blocks of 7 qubits generated
by the source described above. Clearly any sequence of qubits in states
|0〉 and |1〉 is possible, but some are more likely than others. In fact,
typically you will find either a sequence that contains only qubits in
state |0〉 or sequences with a single qubit in state |1〉 and all others in
state |0〉, or sequences with only two qubits in state |1〉 as shown below:

|ψ00000〉 = |0〉|0〉|0〉|0〉|0〉|0〉|0〉
|ψ00001〉 = |0〉|0〉|0〉|0〉|0〉|0〉|1〉
|ψ00010〉 = |0〉|0〉|0〉|0〉|0〉|1〉|0〉
|ψ00011〉 = |0〉|0〉|0〉|0〉|1〉|0〉|0〉
|ψ00100〉 = |0〉|0〉|0〉|1〉|0〉|0〉|0〉 (1.5)

|ψ00101〉 = |0〉|0〉|1〉|0〉|0〉|0〉|0〉
|ψ00110〉 = |0〉|1〉|0〉|0〉|0〉|0〉|0〉
|ψ00111〉 = |1〉|0〉|0〉|0〉|0〉|0〉|0〉
|ψ01000〉 = |1〉|1〉|0〉|0〉|0〉|0〉|0〉

... (1.6)

The probability that you will get one of the above sequences is
plikely = (6

7
)7 + 7(6

7
)6(1

7
) + 21(6

7
)5(1

7
)2 = 0.935. Of course, these ’typical’

states can be enumerated using just three binary digits, i.e. 5 binary
digits are sufficient to enumerate 93.5% of all occurring sequences. This
procedure is analogous to labeling the typical sequences of 0s and 1s
shown in figure 1.2 except that we now ’enumerate’ the typical se-
quences with ’quantum states’. Now, let us see how we can use this
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fact quantum mechanically. We define a unitary transformation that
has the following effect:

U |0〉|0〉|0〉|0〉|0〉|0〉|0〉 = |0〉|0〉|0〉|0〉|0〉|0〉|0〉
U |0〉|0〉|0〉|0〉|0〉|0〉|1〉 = |0〉|0〉|0〉|0〉|0〉|0〉|1〉
U |0〉|0〉|0〉|0〉|0〉|1〉|0〉 = |0〉|0〉|0〉|0〉|0〉|1〉|0〉
U |0〉|0〉|0〉|0〉|1〉|0〉|0〉 = |0〉|0〉|0〉|0〉|0〉|1〉|1〉
U |0〉|0〉|0〉|1〉|0〉|0〉|0〉 = |0〉|0〉|0〉|0〉|1〉|0〉|0〉 (1.7)

U |0〉|0〉|1〉|0〉|0〉|0〉|0〉 = |0〉|0〉|0〉|0〉|1〉|0〉|1〉
U |0〉|1〉|0〉|0〉|0〉|0〉|0〉 = |0〉|0〉|0〉|0〉|1〉|1〉|0〉
U |1〉|0〉|0〉|0〉|0〉|0〉|0〉 = |0〉|0〉|0〉|0〉|1〉|1〉|1〉
U |1〉|1〉|0〉|0〉|0〉|0〉|0〉 = |0〉|0〉|0〉|1〉|0〉|0〉|0〉 (1.8)

... (1.9)

In this case the unitary transformation is a matrix that maps a
set of 29 orthogonal column vectors on another set of 29 orthogonal
vectors in a complex vector space of dimension 27. The effect of this
unitary transformation is to compress the information about the typi-
cal sequences into the last three qubits, while the first four qubits are
always in the same pure state |0〉 and therefore do not carry any infor-
mation. However, when U acts on other, less likely, sequences it will
generate states that have some of the first four qubits in state |1〉. Now
comes the crucial step, we throw away the first two qubits and obtain
a sequence of five qubits:

|0〉|0〉|0〉|0〉|0〉|0〉|0〉 → |0〉|0〉|0〉|0〉|0〉
|0〉|0〉|0〉|0〉|0〉|0〉|1〉 → |0〉|0〉|0〉|0〉|1〉
|0〉|0〉|0〉|0〉|0〉|1〉|0〉 → |0〉|0〉|0〉|1〉|0〉
|0〉|0〉|0〉|0〉|0〉|1〉|1〉 → |0〉|0〉|0〉|1〉|1〉
|0〉|0〉|0〉|0〉|1〉|0〉|0〉 → |0〉|0〉|1〉|0〉|0〉
|0〉|0〉|0〉|0〉|1〉|0〉|1〉 → |0〉|0〉|1〉|0〉|1〉
|0〉|0〉|0〉|0〉|1〉|1〉|0〉 → |0〉|0〉|1〉|1〉|0〉
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|0〉|0〉|0〉|0〉|1〉|1〉|1〉 → |0〉|0〉|1〉|1〉|1〉 (1.10)

|0〉|0〉|0〉|1〉|0〉|0〉|0〉 → |0〉|1〉|0〉|0〉|0〉 (1.11)

Therefore we have compressed the 7 qubits into 5 qubits. Of course
we need to see whether this compression can be undone again. This is
indeed the case, when these three qubits are passed on to some other
person, this person then adds four qubits all in the state |0〉 and then
applies the inverse unitary transformation U−1 and obtains the states
in equation 1.7 back. This implies that this person will reconstruct
the correct quantum state in at least 93.5% of the cases and he has
achieved this sending only 3 qubits. As we showed in the classical
case (see equation 1.3), in the limit of very long blocks composed of n
qubits, our friend will be able to reconstruct almost all quantum states
by sending only nH(6

7
) = 0.59n qubits. Note that this procedure also

works when we have a superposition of states. For example, the state

|ψ〉 = α|0〉|0〉|0〉|0〉|0〉|0〉|0〉+ β|0〉|0〉|0〉|0〉|0〉|0〉|1〉 (1.12)

can be reconstructed perfectly if we just send the state of three
qubits given below:

|ψ〉 = α|0〉|0〉|0〉|0〉|0〉+ β|0〉|0〉|0〉|0〉|1〉 (1.13)

Therefore not only the states in equation 1.7 are reconstructed per-
fectly, but also all superpositions of these states.

A very similar procedure would work also when we have a source
that emits quantum states |ψi〉 with probabilities pi, giving rise to an
arbitrary density operator ρ =

∑
i pi|ψi〉〈ψi|. Unlike the example in

equation 1.4, the states |ψi〉 can be non − orthogonal states of a two
level system so the resulting density matrix is not in diagonal form.
In this slightly more complicated case, the first step consists in finding
the eigenvectors and eigenvalues of ρ. As the eigenvectors to different
eigenvalues are orthogonal, we are then in the situation of equation
1.4. We can immediately see that the number of qubits that need to
be sent, to ensure that the probability with which we can reconstruct
the quantum state correctly is arbitrarily close to unity, is given by
n times the Shannon entropy of the eigenvalues of ρ which is in turn
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equal to the von Neumann entropy S(ρ). Since we can reconstruct the
quantum state ρ⊗n of a system composed of n qubits by sending only
nS(ρ) qubits, we say that nS(ρ) is the quantum information content of
the composite system.

1.4 Quantum State Teleportation

The procedure we will analyse is called quantum teleportation and can
be understood as follows. The naive idea of teleportation involves a
protocol whereby an object positioned at a place A and time t first
“dematerializes” and then reappears at a distant place B at some later
time t + T . Quantum teleportation implies that we wish to apply
this procedure to a quantum object. However, a genuine quantum
teleportation differs from this idea, because we are not teleporting the
whole object but rather its state from particle A to particle B. As
quantum particles are indistinguishable anyway, this amounts to ‘real’
teleportation.

One way of performing teleportation (and certainly the way por-
trayed in various science fiction movies, e.g. The Fly) is first to learn
all the properties of that object (thereby possibly destroying it). We
then send this information as a classical string of data to B where
another object with the same properties is re-created. One problem
with this picture is that, if we have a single quantum system in an un-
known state, we cannot determine its state completely because of the
uncertainty principle. More precisely, we need an infinite ensemble of
identically prepared quantum systems to be able completely to deter-
mine its quantum state. So it would seem that the laws of quantum
mechanics prohibit teleportation of single quantum systems. However,
the very feature of quantum mechanics that leads to the uncertainty
principle (the superposition principle) also allows the existence of en-
tangled states. These entangled states will provide a form of quantum
channel to conduct a teleportation protocol. It will turn out that there
is no need to learn the state of the system in order to teleport it. On the
other hand, there is a need to send some classical information from A to
B, but part of the information also travels down an entangled channel.
This then provides a way of distinguishing quantum and classical cor-
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relations, which we said was at the heart of quantifying entanglement.
After the teleportation is completed, the original state of the particle
at A is destroyed (although the particle itself remains intact) and so
is the entanglement in the quantum channel. These two features are
direct consequences of fundamental laws in information processing. I
cannot explain these here as I do not have enough time, but if you are
interested you should have a look at the article M.B. Plenio and V.
Vedral, Contemp. Physics 39, 431 (1998) which has been written for
final year students and first year PhD students.

1.4.1 A basic description of teleportation

Let us begin by describing quantum teleportation in the form originally
proposed by Bennett, Brassard, Crepeau, Jozsa, Peres, and Wootters
in 1993. Suppose that Alice and Bob, who are distant from each other,
wish to implement a teleportation procedure. Initially they need to
share a maximally entangled pair of quantum mechanical two level
systems. Unlike the classical bit, a qubit can be in a superposition of
its basis states, like |Ψ〉 = a|0〉 + b|1〉. This means that if Alice and
Bob both have one qubit each then the joint state may for example be

|ΨAB〉 = (|0A〉|0B〉+ |1A〉|1B〉)/
√

2 , (1.14)

where the first ket (with subscript A) belongs to Alice and second (with
subscript B) to Bob. This state is entangled meaning, that it cannot be
written as a product of the individual states (like e.g. |00〉). Note that
this state is different from a statistical mixture (|00〉〈00| + |11〉〈11|)/2
which is the most correlated state allowed by classical physics. Now
suppose that Alice receives a qubit in a state which is unknown to her
(let us label it |Φ〉 = a|0〉+ b|1〉) and she has to teleport it to Bob. The
state has to be unknown to her because otherwise she can just phone
Bob up and tell him all the details of the state, and he can then recreate
it on a particle that he possesses. If Alice does not know the state, then
she cannot measure it to obtain all the necessary information to specify
it. Therefore she has to resort to using the state |ΨAB〉 that she shares
with Bob. To see what she has to do, we write out the total state of
all three qubits

|ΦAB〉 := |Φ〉|ΨAB〉 = (a|0〉+ b|1〉)(|00〉+ |11〉)/
√

2 . (1.15)
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Figure 1.3: A schematic picture of quantum state teleportation. A
qubit in an unknown quantum state is entered into a machine which
consumes one unit of entanglement (ebit) and a local measurement
whose four possible outcomes are transmitted to the receiver. As a
result the original state of the qubit is destroyed at the senders location
and appears at the receivers end. The mathematical details can be
found in [2, 3]

However, the above state can be written in the following convenient way
(here we are only rewriting the above expression in a different basis,
and there is no physical process taking place in between)

|ΦAB〉 = (a|000〉+ a|011〉+ b|100〉+ b|111〉)/
√

2

=
1

2

[
|Φ+〉(a|0〉+ b|1〉) + |Φ−〉(a|0〉 − b|1〉)

+|Ψ+〉(a|1〉+ b|0〉) + |Ψ−〉(a|1〉 − b|0〉)
]
, (1.16)

where

|Φ+〉 = (|00〉+ |11〉)/
√

2 (1.17)

|Φ−〉 = (|00〉 − |11〉)/
√

2 (1.18)

|Ψ+〉 = (|01〉+ |10〉)/
√

2 (1.19)

|Ψ−〉 = (|01〉 − |10〉)/
√

2 (1.20)

form an ortho-normal basis of Alice’s two qubits (remember that the
first two qubits belong to Alice and the last qubit belongs to Bob).
The above basis is frequently called the Bell basis. This is a very useful
way of writing the state of Alice’s two qubits and Bob’s single qubit be-
cause it displays a high degree of correlations between Alice’s and Bob’s
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parts: to every state of Alice’s two qubits (i.e. |Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉)
corresponds a state of Bob’s qubit. In addition the state of Bob’s qubit
in all four cases looks very much like the original qubit that Alice has
to teleport to Bob. It is now straightforward to see how to proceed
with the teleportation protocol:

1. Upon receiving the unknown qubit in state |Φ〉 Alice performs
projective measurements on her two qubits in the Bell basis. This
means that she will obtain one of the four Bell states randomly,
and with equal probability.

2. Suppose Alice obtains the state |Ψ+〉. Then the state of all three
qubits (Alice + Bob) collapses to the following state

|Ψ+〉(a|1〉+ b|0〉) . (1.21)

(the last qubit belongs to Bob as usual). Alice now has to com-
municate the result of her measurement to Bob (over the phone,
for example). The point of this communication is to inform Bob
how the state of his qubit now differs from the state of the qubit
Alice was holding previously.

3. Now Bob knows exactly what to do in order to complete the
teleportation. He has to apply a unitary transformation on his
qubit which simulates a logical NOT operation: |0〉 → |1〉 and
|1〉 → |0〉. He thereby transforms the state of his qubit into
the state a|0〉 + b|1〉, which is precisely the state that Alice had
to teleport to him initially. This completes the protocol. It is
easy to see that if Alice obtained some other Bell state then Bob
would have to apply some other simple operation to complete
teleportation. We leave it to the reader to work out the other two
operations (note that if Alice obtained |Φ+〉 he would not have
to do anything). If |0〉 and |1〉 are written in their vector form
then the operations that Bob has to perform can be represented
by the Pauli spin matrices, as depicted in Fig. 1.4.
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(a) l l lψ ︸ ︷︷ ︸
|Ψ+〉

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼ (α|0〉+ β|1〉)(|00〉+ |11〉)/
√

2

(b) l l lψ

Measurement
{|Ψ±〉, |Φ±〉}

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

1
2
|Φ+〉(α|0〉+ β|1〉)

+ 1
2
|Φ−〉(α|0〉 − β|1〉)

+ 1
2
|Ψ+〉(α|1〉+ β|0〉)

+ 1
2
|Ψ−〉(α|1〉 − β|0〉)

(c) Alice finds|Φ+〉 −→0 Bob does nothing

Alice finds|Φ−〉 −→1 Bob performs σz

Alice finds|Ψ+〉 −→2 Bob performs σx

Alice finds|Ψ−〉 −→3 Bob performs σzσx

(d) l l lψ∼∼∼∼∼∼

Figure 1.4: The basic steps of quantum state teleportation. Alice and
Bob are spatially separated, Alice on the left of the dashed line, Bob
on the right. (a) Alice and Bob share a maximally entangled pair of
particles in the state (|00〉+ |11〉)/

√
2. Alice wants to teleport the un-

known state |ψ〉 to Bob. (b) The total state of the three particles that
Alice and Bob are holding is rewritten in the Bell basis Eqs. (1.17-1.20)
for the two particles Alice is holding. Alice performs a measurement
that projects the state of her two particles onto one of the four Bell
states. (c) She transmits the result encoded in the numbers 0, 1, 2, 3
to Bob, who performs a unitary transformation 1, σz, σx, σzσx that de-
pends only on the measurement result that Alice obtained but not on
the state |ψ〉! (d) After Bob has applied the appropriate unitary op-
eration on his particle he can be sure that he is now holding the state
that Alice was holding in (a).

An important fact to observe in the above protocol is that all the
operations (Alice’s measurements and Bob’s unitary transformations)
are local in nature. This means that there is never any need to perform
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a (global) transformation or measurement on all three qubits simulta-
neously, which is what allows us to call the above protocol a genuine
teleportation. It is also important that the operations that Bob per-
forms are independent of the state that Alice tries to teleport to Bob.
Note also that the classical communication from Alice to Bob in step 2
above is crucial because otherwise the protocol would be impossible to
execute (there is a deeper reason for this: if we could perform telepor-
tation without classical communication then Alice could send messages
to Bob faster than the speed of light, remember that I explained this
in a previous lecture.

Important to observe is also the fact that the initial state to be tele-
ported is at the end destroyed, i.e it becomes maximally mixed, of the
form (|0〉〈0| + |1〉〈1|)/2. This has to happen since otherwise we would
end up with two qubits in the same state at the end of teleportation
(one with Alice and the other one with Bob). So, effectively, we would
clone an unknown quantum state, which is impossible by the laws of
quantum mechanics (this is the no-cloning theorem of Wootters and
Zurek).

1.5 Two conclusions

After you have learnt about teleportation we can now use the idea of
teleportation to define the unit of entanglement. A unit of entanglement
(ebit) is that amount of quantum correlations that allow us to teleport
one qubit of quantum information perfectly. While this definition is
perfectly acceptable there are other ways to define entanglement and
those will be discussed by Ignacio Cirac in the following set of lectures.

The other idea that will be elaborated on in the lectures by Rolf
Tarrach is that of quantum cryptography. If Alice and Bob share a
maximally entangled state, then they can use this state for teleportation
of an unknown quantum state. But they can also complete a simpler
task, namely Alice can instead take a bit of a classical message and
encode it in two orthogonal quantum states: the letter 0 is encoded in
state |0〉 and the letter 1 is encoded in state |1〉. Of course she cannot
simply transmit the state from to Bob as an eavesdropper could just
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measure the state and determine which one it is. However, Alice can
use her ebit that she shares with Bob and teleport her state to Bob.
Now an eavesdropper gets useless classical bits of information that do
not tell him anything about the message that Alice wishes to transmit.
Therefore Alice has sent a secret message to Bob.

This first set of lectures is based on a number of articles and lecture
notes from which I have taken parts. These are my own lecture notes
on Quantum Mechanics from which the teleportation section originates
[4]. Furthermore I have used two introductory articles that I have co-
written for Contemporary Physics and which aim at third year physics
students. These are [3] and [5]. if you want to dive deeper into quantum
information theory you may want to have a look at the excellent book
of Nielsen and Chuang [6].



Chapter 2

Distinguishability and
entanglement measures

2.1 Typical and atypical messages

In the first set of lectures I have introduced the key ideas on classical
and quantum information and in particular I have demonstrated how
to quantify classical information, classical correlations and quantum
information. However, the goal of quantifying quantum correlations
has not been dealt with thoroughly. Ignacio Cirac gave you some first
insights into the problem and he defined some entanglement measures.
He approached the problem via local operations and classical commu-
nication and the constraints arising from this. In these lectures I will
approach the problem from a different viewpoint which may initially
seems a bit surprising and unrelated. We will attempt to develop a
notion of how different or how similar two quantum states are. Then
the key idea will be that we would like to be able to say that a state is
more entangled the further it is away from all unentangled states. This
basic idea will then be turned into a quantitative form and I will discuss
some properties of the new entanglement measure. In doing so I will
introduce a quantity that has proven to be very important in quantum
information theory, namely the relative entropy of entanglement.

As usual I will start my considerations with the classical case as
this I technically easier. Then I will transfer these ideas to quantum
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mechanics and use them to quantify entanglement.

2.1.1 Typical and atypical sequences

In my first lectures you have learnt that messages can often be com-
pressed and the reason for that was that usually messages have a very
typical form. Remember what this meant. If you take a coin and it is
not quite a fair coin, then say the probability that the coin shows up
is pup = 0.7 and that it shows down pdown = 0.3. Now let us throw
this coin N times. Clearly you would expect that normally you will
find roughly 0.7N times up and roughly 0.3N times down. In fact you
would expect that the variation around the mean number is at most of
the order of

√
N0.70.3 which you obtain from the binomial distribution.

Therefore finding 0.7N±
√
N0.70.3 times up would be the typical result.

Of course as you know from life or the law of large numbers the typical
result will become more and more likely the more often you throw the
coin, ie deviations from this typical behaviour will become less and less
frequent. Now you may ask quite naturally how infrequent do these
deviations become? Is there a simple law governing this? These are
questions I am going to answer in the following. I do not want to bother
you with mathematical details which can for example be found in [1]
but I will rather give a slightly handwaving derivation of the correct
result.

2.1.2 Distinguishing coins and the relative entropy

Let us make some experiments. I will now give you a coin but I will
not tell you what the probabilities for up and down are. You will have
to estimate this by making experiments, ie throwing the coin. Let us
say that you throw the coin N times. You will then find some number
of up, say qupN , and down, say qdownN = (1− qup)N . Now I ask you to
make a guess as to which are actually the probabilities for up and down,
ie from a limited set of data you have to conclude the true properties
of the coin. Well, the best guess you can make is that indeed the coin
has probabilities qup for ’up’ and qdown for ’down’. But this may not
be the correct guess, simply because we have statistical fluctuations. I
give you an extreme example:
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Imagine the following situation. I have given you a fair coin, ie
pup = 1/2 = pdown. Now you throw it N times. Clearly, there is a small
chance, namely 2−N , that you will find in all your throws that the coin
shows ’up’. Then you would guess that the coin is in fact totally unfair.
But thats a mistake because I had passed you a fair coin.

Now in general we would like to know how likely it is that a coin
which has probability q for showing up will, in N tries, actually produce
pN up!? We find by Stirlings formula (n! ∼= nne−n)

lnQ = ln

(
qpN(1− q)(1−p)N

(
N
pN

))
∼= pN ln q + (1− p)N ln(1− q) +N lnN −N
−(Np lnNp−Np)− ((1− p)N lnN(1− p)−N(1− p))

∼= N(−p ln p− (1− p) ln(1− p) + p ln q + (1− p) ln(1− q))

or when written for logarithm to base 2

log2Q = N(−p log2 p− (1− p) log2(1− p) + p log2 q + (1− p) log2(1− q))
or equivalently

Q = 2−NS(p||q)

where we defined the relative entropy (also sometimes called the Kullback-
Leibler distance)

S(p||q) = p log2 p+ (1− p) log2(1− p)− p log2 q − (1− p) log2(1− q)

Now you can calculate for any situation the probability for making
the wrong guess that the coin has probability q for up if in fact it has
probability p. So the relative entropy is indeed some measure that tells
you how likely it is that a certain coin, characterized by a probability
distribution {pi} behaves like a coin with probability distribution {qi}
and therefore we can use the relative entropy as a measure of separation
between the two probability distributions, ie two probability distribu-
tions are more different if it is less likely that one will behave like the
other in an experiment.

Now look at the relative entropy again! It is actually not symmetric
with respect to interchange of p and q! Thats a bit weird as we would



22CHAPTER 2. DISTINGUISHABILITY AND ENTANGLEMENTMEASURES

expect it to be as likely to falsely assume q if p is correct as the other
way round. Thats wrong, but why? Lets look at our extreme example
again but with interchanged p and q. Now I pass you a coin that has
probability q = 1 to show ’up’. You throw it N times and indeed you
find N times ’up’ and your inference is that the coin has q = 1 and
you are right - always. The reason for this behaviour is that different
sequences have different probabilities to behave atypical, in fact the
totally unfair coin never behaves atypical! This justifies the asymmetry
of the relative entropy. In fact if for the two examples you plug the
number into our little formula for Q, you get exactly the right answers.

2.1.3 The quantum version of all this

Now you will of course ask whether there is a quantum version of all
this and indeed there is. However, now things are a lot more difficult
to see partly because there are so many more kinds of measurements
that you can do. Therefore I will not present you with any details of
derivations, but I will just state the essential result again in terms of
making guesses about quantum states.

The probability of falsely inferring that one holds N copies of a
quantum state σ if one is in fact given N copies of a quantum state ρ
is for large N given by

p(ρ→ σ) = 2−NS(σ||ρ) (2.1)

where the quantum relative entropy is defined as

S(σ||ρ) = tr{σ log σ − σ log ρ}

Clearly, when both σ and ρ commute, then this definition goes over to
the classical relative entropy of entanglement.

So, also in quantum mechanics we can use the relative entropy as
a measure of how different two density operators are. Before I will
proceed to study entanglement measures again, I will give you a few
more properties of the relative entropy.

Firstly the relative entropy is always non-negative, ie

∀σ, ρ : S(σ||ρ) ≥ 0
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and

S(σ||ρ) = 0⇔ σ = ρ

The interpretation of this is quite clear. The first statement says that
the probability for falsely assuming σ given ρ is always smaller or equal
to 1 and decreases with increasing N , which implies that the relative
entropy is non-negative. The second statement says that exactly when
σ = ρ then the probability to confuse them is 1.

Worryingly though the relative entropy does not have any other
properties that you would normally expect from a mathematical dis-
tance measure. The relative entropy is not symmetric and it does not
satisfy a triangular inequality.

The relative entropy is a jointly convex function which means that
for all pi ≥ 0 and

∑
i pi = 1 we have

∀ρi, σi : S(
∑

piσi||
∑

piρi) ≤
∑

piS(σi|ρi) (2.2)

What does this mean? If we have systems in different states and we
mix them together, ie we forget which system is in which individual
state, then we discard information. Discarding this information makes
systems less distinguishable.

After these few properties, let us now move on to study the appli-
cation of the relative entropy to entanglement measures.

2.1.4 Another entanglement measure

As you have learnt from Ignacio Cirac, there are various entanglement
measures. Two basic ones are the entanglement of formation and the
entanglement of distillation. These two measures are however not the
only ones. But before I introduce the new measure let us first think
briefly what sort of property an entanglement measure should possess.
Clearly, if the state is not entangled then the measure should indicate
this by taking the value zero. Furthermore, it cannot make a difference
in which local basis one considers the state. As any local basis change
is implemented by a local unitary transformation which is reversible,
the amount of entanglement should remain unchanged under these op-
erations. Finally, general local operations and classical communication
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with subselection can not increase entanglement and therefore any en-
tanglement measure should not increase under these operations. Finally
you have learnt from Ignacio Ciracs lectures that the unique measure of
entanglement for pure states is given by the entropy of entanglement.
Therefore we would hope that any measure of entanglement reduces
to the entropy of entanglement for pure states. Let me state these
constraints more formally.

E1. E(σ) = 0 iff σ is separable (or if it is ppt).

E2. Local unitary operations leave E(σ) invariant, i.e. E(σ) = E(UA⊗
UBσU

†
A ⊗ U

†
B).

E3. The expected entanglement cannot increase under LGM+CC+PS
given by

∑
V †i Vi = 1, i.e.∑

tr(σi) E(σi/tr(σi)) ≤ E(σ) , (2.3)

where σi = ViσV
†
i .

E4. For pure states the entanglement is given by the entropy of en-
tanglement, ie the von Neumann entropy of the reduced density
operator.

All these properties are satisfied by both the entanglement of formation
and the entanglement of distillation. Now I would like to introduce
another entanglement measure, the relative entropy of entanglement,
which satisfies all these criteria.

I do not want this measure to drop from the sky. Therefore I will
explain to you how it was actually found. As I have explained to you
in the last lecture, a good measure for the correlations in classically
correlated random variables is given by the mutual information

I = H(Y )−H(Y |X) = H(X) +H(Y )−H(X, Y )

Now I would like to show you something remarkable, namely that this
expression can be rewritten in terms of the classical relative entropy.
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Given a joint probability distribution p(x, y) and its marginal distribu-
tions p(x) and p(y) then we have

S(p(x, y)|p(x) · p(y)) =
∑
x,y

[p(x, y) log2 p(x, y)− p(x, y) log2(p(x)p(y))]

= −H(X, Y )−
∑
x,y

p(x, y)(log2 p(x) + log2 p(y))

= −H(X, Y )−
∑
x

p(x) log2 p(x)−
∑
y

p(y) log2 p(y)

= H(X) +H(Y )−H(X, Y )

Now let us carry this over to quantum mechanics. One could expect
that the quantum version of the mutual information is a measure of all
the correlations in a state σ and it would be given by

IQM := S(σA) + S(σB)− S(σ)

where σA is the reduced density operator of system A and correspond-
ingly σB is the reduced density operator of system B. But again this
can be expressed in terms of the relative entropy and we find

IQM := S(σ|σA ⊗ σB)

Now this quantity clearly does not satisfy all the criteria that I have de-
manded from an entanglement measure, so that we still have to amend
it a bit. What is going wrong is that with local operations and classical
communication we can create classically correlated states, but we are
comparing our state σ with a completely uncorrelated product state.
In addition we are not really interested in all the correlations, we really
would like to know amount of quantum correlations. So maybe it would
make more sense to compare our state σ to a classically correlated state
and see how different they are. But which classically correlated state?
Well, we do not know, so the best we can do is to compare to all the
classically correlated states and then find the closest one (see figure).
The idea behind this is to take account of all the classical correlations
in a state so that the remaining correlations should somehow be of
quantum nature. Therefore we would define our entanglement measure
as

ER(σ) = min
ρ∈D

S(σ||ρ)
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Well, this is the idea, which you can also see in the figure. But now,
having seen the idea one really has to sit down and prove that the
so defined measure actually satisfies all the requirements that I have
written down. Well, this is in fact quite tricky, especially when one
does it the first time round. Therefore I am not going to demonstrate
this. For those of you who want to see the proofs, have a look some of
the original papers [7].

Theorem E(x1σ1 +x2σ2) ≤ x1E(σ1)+x2E(σ2), where x1 +x2 = 1.
Proof. This property follows from the convexity of the quantum rela-
tive entropy in both arguments

S(x1σ1 + x2σ2||x1ρ1 + x2ρ2) ≤ x1S(σ1||ρ1) + x2S(σ2||ρ2) . (2.4)

Now,

E(x1σ1 + x2σ2) ≤ S(x1σ1 + x2σ2||x1ρ
∗
1 + x2ρ

∗
2)

≤ x1S(σ1||ρ∗1) + x2S(σ2||ρ∗2)

= x1E(σ1) + x2E(σ2) , (2.5)

which completes our proof of convexity 2. This is physically a very
satisfying property of an entanglement measure. It says that when we
mix two states having a certain amount of entanglement we cannot get
a more entangled state, i.e. succinctly stated “mixing does not increase
entanglement”. This is what is indeed expected from a measure of
entanglement to predict.

As a last property we state that the entanglement of creation Ec
is never smaller than the Relative Entropy of Entanglement E. We
will show later that this property has the important implication that
the amount of entanglement that we have to invest to create a given
quantum state is usually larger than the entanglement that you can
recover using quantum state distillation methods.
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Figure 2.1: The set of all density matrices, T is represented by the
outer circle. Its subset, a set of disentangled states D is represented
by the inner circle. A state σ belongs to the entangled states, and
ρ∗ is the disentangled state that minimizes the distance D(σ||ρ), thus
representing the amount of quantum correlations in σ. State ρ∗A ⊗ ρ∗B
is obtained by tracing ρ∗ over A and B. D(ρ∗||ρ∗A ⊗ ρ∗B) represent the
classical part of the correlations in the state σ.
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Theorem E(σ) ≤ Ec(σ) = minρ∈D S(σ||ρ).

Proof. Given a state σ then by definition of the entanglement of cre-
ation there is a convex decomposition σ =

∑
piσi with pure states σi

such that

Ec(σ) =
∑

piEc(σi) . (2.6)

As the entanglement of creation coincides with our entanglement for
pure states and as our entanglement is convex it follows that

Ec(σ) =
∑

piEc(σi) =
∑

piE(σi) ≥ E(
∑

piσi) = E(σ) (2.7)

and the proof is completed 2.

The physical explanation of the above result lies in the fact that a
certain amount of additional knowledge is involved in the entanglement
of formation which gives it a higher value to the Relative Entropy of
Entanglement. Let me add that the relative entropy of entanglement
E(σ) can be calculated easily for Bell diagonal states [7]. Comparing
the result to those for the entanglement of formation [8] one finds that,
in fact, strict inequality holds.

2.2 Thermodynamics of Entanglement: Pu-

rification Procedures

There are two ways to produce an upper bound to the efficiency of
any purification procedure. Using condition E3 and the fact that the
Relative Entropy of Entanglement is additive, we can immediately de-
rive this bound. However, this bound can be derived in an entirely
different way. In this section we now abandon conditions E1-E3 and
use only methods of the previous section to put an upper bound to the
efficiency of purification procedures. In particular, we show that the
entanglement of formation is in general larger than the entanglement of
distillation. This is in contrast with the situation for pure states where
both quantities coincide. The Quantum Relative Entropy is seen to
play a distinctive role here, and is singled out as a ‘good’ generator of
a measure of entanglement from among other suggested candidates.
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Figure 2.2: Comparison of the entanglement of creation and the Rela-
tive Entropy of Entanglement for the Werner states (these are are Bell
diagonal states of the form W = diag(F, (1−F )/3, (1−F )/3, (1−F )/3.)
One clearly sees that the entanglement of creation is strictly larger than
the Relative Entropy of Entanglement for 0 < F < 1

2.2.1 Distinguishability and Purification Procedures

In the previous section we presented a statistical basis to the Relative
Entropy of Entanglement by considering distinguishability of two (or
more) quantum states encapsulated in the form of the Quantum Sanov
Theorem. We now use this Quantum Sanov Theorem to put an upper
bound on the amount of entanglement that can be distilled using any
purification procedure. This line of reasoning follows from the fact that
any purification scheme can be viewed as a measurement to distinguish
entangled and disentangled quantum states. Suppose that there exist
a purification procedure with the following property
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• Initially there are n copies of the state σ. If σ is entangled, then
the end product is 0 < m ≤ n singlets and n−m states in ρ ∈ D.
Otherwise, the final state does not contain any entanglement,
i.e. m = 0 (in fact, there is nothing special about singlets: the
final state can be any other known, maximally entangled state
because these can be converted into singlets by applying local
unitary operations).

Note that we can allow the complete knowledge of the state σ. We also
allow that purification procedures differ for different states σ. Perhaps
there is a “universal” purification procedure independent of the initial
state. However, in reality, this property is hard to fulfill. At present
the best that can be done is to purify a certain class of entangled
states. The above is therefore an idealization that might never be
achieved. Now, by calculating the upper bound on the efficiency of
a procedure described above we present an absolute bound for any
particular procedure. We ask: “What is the largest number of singlets
that can be produced (distilled) from n pairs in state σ”? Suppose
that we produce m pairs. This has to be compared to a disentangled
state. Let us now project them non–locally onto the singlet state. The
procedure will yield positive outcomes (1) with certainty so long as the
state we measure indeed is a singlet. The best that you can obtain
from a disentangled state is a positive result with probability of 1

2
.

Suppose that after performing singlet projections onto all m particles
we get a string of m 1’s. From this we conclude that the final state is a
singlet (and therefore the initial state σ was entangled). However, we
could have made a mistake. But with what probability? The answer
is as follows: the largest probability of making a wrong inference is
2−m (if the state that we were measuring had an overlap with a singlet
state of 1/2). On the other hand, if we were measuring σ from the
very beginning (without performing the purification first), then the
probability (i.e. the lower bound) of the wrong inference would be
2−nE(σ). But, purification procedure might waste some information (i.e.
it is just a particular way of distinguishing entangled from disentangled
states, not necessarily the best one), so that the following has to hold

2−nE(σ) ≤ 2−m , (2.8)
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which implies that

nE(σ) ≥ m , (2.9)

i.e. we cannot obtain more entanglement than is originally present.
This, of course, is also directly guaranteed by our condition E3. The
above, however, was a deliberate exercise in deriving the same result
from a different perspective, abandoning conditions E1–E3. Therefore
the relative entropy of entanglement can be used to provide an upper
bound on the efficiency of any purification procedure.

Actually, in the above considerations we implicitly assumed that
the entanglement of n pairs, equivalently prepared in the state σ, is the
same as n×E(σ). We already indicated that this is a conjecture with a
strongly supported basis in the case of the Quantum Relative Entropy.

Now let us make up a formal analogy between thermodynamical
engines and purification procedures. This analogy has the advantage
that it becomes clear why there is a difference between the entanglement
of formation and the entanglement of distillation.

Let us first consider entanglement purification. In this process we
take pairs of particles which have a low degree of entanglement. Then
we apply local measurements and other quantum mechanical operations
to convert the pairs into some pairs with a high degree of entanglement
and some pairs with no entanglement. But this is not the only thing
the machine produces. It also generates a measurement record (all the
outcomes of the measurement). These outcomes will have to be erased
and therefore heat will be created (This is Landauers principle which
is in fact equivalent to the second law of thermodynamics, for more
info look at [5]). This introduces a degree of irreversibility into the
game, as the generation of heat is an irreversible thermodynamic pro-
cess. From Ignacio Ciracs lectures you also learnt about the reverse
process, namely that of creating an entangled state by local operations
from a resources of pure singlet states. Again, if we wish to create a
mixed entangled state from this resource we will have to erase some
information and this again leads to a generation of heat and thereby
to some irreversibility. Therefore you can see that both processes, dis-
tillation and formation, are potentially irreversible as they may create
heat. This is the physical origin of the difference between entanglement
of formation and distillation.
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Here I have to stop, but of course there would be a lot more to
tell. If you have become interested, then I recommend to you to read
some of the references in the back of these notes. Maybe the best
recommendation would be to start with the two introductory articles
[3, 5] and then move to more advanced articles some of which will be
cited in [5].
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