

Quantum information processing with trapped ions

Trapped ion experiments:

- Exploring quantum physics
- Elements of quantum computing
- Quantum simulations
- Precision spectroscopy with entangled states

Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria

Quantum physics with trapped ions

A single trapped ion: Realization of a quantum harmonic oscillator

Motional degrees of freedom

A single trapped ion: Realization of a quantum bit

Internal degrees of freedom

 $H\propto\sigma_x,\,H\propto\sigma_y$

Strings of trapped ion: Entangled quantum bits

 $\Psi \propto |\!\downarrow\rangle|\!\downarrow\rangle + |\!\uparrow\rangle|\!\uparrow\rangle$

1952: Experiments with single atoms ?

In the first place it is fair to state that we are not *experimenting* with single particles, anymore than we can raise Ichtyosauria in the zoo.

..., this is the obvious way of registering the fact, that we *never* experiment with just *one* electron or atom or (small) molecule. In thought-experiments we sometimes assume that we do; this envariably entails ridiculous consequences.

British Journal of the Philosophy of Science III (10), (1952)

E. Schrödinger

1953: Invention of the Paul trap

Dr. Wolfgang Paul und Dr. Helmut Steinwedel, Bonn sind als Erfinder genannt worden

Dr.=Jng. Wolfgang Paul, Bonn

Verfahren zur Trennung bzw. zum getrennten Nachweis von Ionen verschiedener spezifischer Ladung

Patentiert im Gebiet der Bundesrepublik Deutschland vom 24. Dezember 1953 an Patentanmeldung bekanntgemacht am 5. Januar 1956 Patenterteilung bekanntgemacht am 7. Juni 1956

W. Paul

1978: Observation of single trapped ions

W. Neuhauser et al., PRL 41, 233 (1978), PRA (1980)

Fluorescence detection

Detection of single absorption/emission events

Experiments: Dehmelt, Toschek, Blatt, Wineland (1986)

Quantum physics with a single trapped ion

Quantum physics with a single trapped ion

Important tools:

- Traps in UHV systems \longrightarrow Isolation + long storage times
- Narrow-band lasers \longrightarrow Laser cooling
- Photomultipliers \longrightarrow Efficient quantum state detection

Areas of physics:

- Quantum optics: a single ion interacting with single photons
- Tests of quantum physics
- Single-ion optical clocks → Alastair Sinclair's lectures

Quantum physics with ion strings

Ion crystals

At low temperatures:

Equibrium positions determined by trapping forces and mutual Coulomb repulsion

Boulder, USA: Hg⁺

Aarhus, Denmark: ⁴⁰Ca⁺ (red) and ²⁴Mg⁺ (blue)

Quantum physics with ion strings

Ion crystals

At low temperatures:

Equibrium positions determined by trapping forces and mutual Coulomb repulsion

FIG. 3. Crystalline structure of seven $^{24}\text{Mg}^+$ ions observed

VOLUME 59, NUMBER 26

PHYSICAL REVIEW LETTERS

28 DECEMBER 1987

Observation of a Phase Transition of Stored Laser-Cooled Ions

F. Diedrich, E. Peik, J. M. Chen, W. Quint, and H. Walther

Max-Planck-Institut für Quantenoptik and Sektion Physik, Universität München, 8046 Garching, Federal Republic of Germany (Received 8 July 1987)

Quantum physics and information processing

Journal of Statistical Physics, Vol. 22, No. 5, 1980

The Computer as a Physical System: A Microscopic Quantum Mechanical as Represented by Tur

Paul Benioff^{1,2}

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

Proc. R. Soc. Lond. A 425, 73-90 (1989)

Quantum computational networks

By D. Deutsch

arXiv:quant-ph/9508027v2 25 Jan 1996

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer^{*}

Peter W. Shor[†]

Classical vs. quantum information processing

Physical system with two distinct states 0 or 1

Logic gates

Boolean logic operation

 $0 \rightarrow 1$

 $1 \rightarrow 0$

 $(\epsilon_1, \epsilon_2) \rightarrow \epsilon_1 \oplus \epsilon_2$

Quantum bit:

Two-level quantum system with state

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

Quantum logic gate

Unitary transformation

single qubit gate

 $-U-ert \psi
angle
ightarrow Uert \psi
angle$

two-qubit gate

 $|\epsilon_1
angle|\epsilon_2
angle
ightarrow |\epsilon_1
angle|\epsilon_1\oplus\epsilon_2
angle$

Trapped ions for quantum information processing

VOLUME 74, NUMBER 20

PHYSICAL REVIEW LETTERS

15 May 1995

Quantum Computations with Cold Trapped Ions

J. I. Cirac and P. Zoller*

Institut für Theoretische Physik, Universiät Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria (Received 30 November 1994)

A quantum computer can be implemented with cold ions confined in a linear trap and interacting with laser beams. Quantum gates involving any pair, triplet, or subset of ions can be realized by coupling the ions through the collective quantized motion. In this system decoherence is negligible, and the measurement (readout of the quantum register) can be carried out with a high efficiency.

- State detection
- Single qubit gates

Trapped ions for quantum information processing

VOLUME 74, NUMBER 20

PHYSICAL REVIEW LETTERS

15 May 1995

Quantum Computations with Cold Trapped Ions

J. I. Cirac and P. Zoller*

Institut für Theoretische Physik, Universiät Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria (Received 30 November 1994)

A quantum computer can be implemented with cold ions confined in a linear trap and interacting with laser beams. Quantum gates involving any pair, triplet, or subset of ions can be realized by coupling the ions through the collective quantized motion. In this system decoherence is negligible, and the measurement (readout of the quantum register) can be carried out with a high efficiency.

Ion string

- Qubit register
- State detection
- Single qubit gates

Entangling gates

• individual addressing, spatially resolved fluorescence

- individual addressing, spatially resolved fluorescence
- coupling internal and motional states by laser takes on simple form

- individual addressing, spatially resolved fluorescence
- coupling internal and motional states by laser takes on simple form
- no direct state-dependent interactions between ions

Vibrational modes

Experimental setup

Experimental setup

XIXIX

Linear ion trap

Linear ion trap

Harmonic trapping potential in the centre

Anisotropic potential with

 $u_z \ll \nu_x, \nu_y \quad (\approx 1-5 \text{ MHz})$

linear chain of ions

Quantum physics with ion strings

- based on Alastair's lectures: Theory of ion traps, laser cooling, two-level atoms, coupling of internal and vibrational states by laser light
- more emphasis on coherent atom-light interactions
- more ions: 2,3,4,...

Lecture plan:

- Encoding of quantum information in trapped ions
- Manipulation and measurement of quantum information
- Creation of entanglement
- Analysis of multi-qubit states
- Quantum gate operations
- Elements of quantum computing with trapped ions
- Entanglement for metrological applications
- Quantum simulation with trapped ions

today

Trapped-ion quantum bits

Encoding, manipulation and measurement

	Group					PERI	ODI	С ТА	BLE	1 .T			Phy Labora	sics N	JLS	Stand Data	lard Ref Program	erence
IA			Atomic Properties of the Elements							physics.nist.gov www.nist.gov/srd VIII				VIII				
	1 ⁻ S _{1/2}				Ere	quently us	od fundar	nental nhv	sical cons	tante	_		t	J.S. DEPAR	MENT OF C	OMMERCE		
1	Hydrogen				For the most	accurate values	s of these and c	ther constants,	visit physics.nis	st.gov/constants	5		Natio	nal Institute	of Standards	tration and Technol	ogy	Helium
	1s 13 5984	IIA		1	second = 9	tween the tw	o hyperfine l	evels of the g	sponding to t ground state	of ¹³³ Cs			IIIB	IVB	VB	VIB	VIIR	4.00200 1s ²
	3 ² S _{1/2}	4's ₀		s P	peed of light lanck consta	in vacuum nt	c h	299 792 4 6.6261 × 1	58 m s' 0 ⁻³⁴ J s	(exact) (ħ = h/2π)			5 ² P ^a _{1/2}	6 ³ P ₀	7 ⁴ S _{3/2}	8 ³ P ₂	9 ² P _{3/2}	10 1S ₀
2	LI	Be		nalv	chr	orao	d io	ne a	nnr	onri	ato -	for	B	C	N	Ο	F	Ne
	6.941	9.01218 1s ² 2s ²		igiy	-0116	arge	u iu	115 0	ippi	opn	ale		10.811	12.0107	14.00674	15.9994 15.2222.04	18,99840	20.1797
	5.3917 11 ² S	9.3227	C	uar	ntum	info	orma	atior	n pro	oces	ssind	a	8.2980	11.2603	14.5341	13.6181	17.4228	21.5646
	Na	Ma					R_nc	13.6057 6	v P'			9	A	Si	P	S P2	CI	Ar
3	Sodium 22.98977	Magnesium 24,3050		В	oltzmann coi	nstant	ĸ	1.3807 × 1	0 ⁻²³ JK ⁻¹				Aluminum 26.98154	Silicon 28.0855	Phosphorus	Sulfur 32.066	Chlorine	Argon 39.948
	[Ne]3s 5.1391	[Ne]3s ² 7.6462	IIIA	IVA	VA	VIA	VIIA	F	VIIIA		IB .	IIB	[Ne]3s ² 3p 5.9858	[Ne]3s ² 3p ² 8.1517	[Ne]3s ² 3p ³ 10.4867	[Ne]3s ² 3p ⁴ 10.3600	[Ne]3s ² 3p ⁵ 12.9676	[Ne]3s ² 3p ⁶ 15.7596
70	19 ² S _{1/2}	20 S.	21 ² D _{3/2}	22_3F2	23 ⁴ F _{3/2}	24 ⁷ S ₃	25 ⁶ S _{5/2}	26 ⁵ D ₄	27 ⁴ F _{9/2}	28 ³ F ₄	29 ² S _{1/2}	30 ¹ S ₀	31 ² P ^o _{1/2}	32 ³ P ₀	33 ⁴ S ^o _{3/2}	34 ³ P ₂	35 ² P ^o _{3/2}	36 ¹ S ₀
Pirio 4	Potassium	Calcium	Scandium	Titanium	V Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper		Gallium	Germanium	Asenic	Selenium	Bromine	Krypton
ď	39.0983 [Ar]4s	40.078 [Ar]4s ²	44.95591 [Ar]3d4s ²	47.867 [Ar]3d ² 4s ²	50.9415 [Ar]3d ³ 4s ²	51.9961 [Ar]3d ⁵ 4s	54.93805 [Ar]3d ⁵ 4s ²	55.845 [Ar]3d ⁶ 4s ²	58.93320 [Ar]3d ⁷ 4s ²	58.6934 [Ar]3d ⁸ 4s ²	63.546 [Ar]3d ¹⁰ 4s	65.39 [Ar]3d ¹⁰ 4s ²	69.723 [Ar]3d ¹⁰ 4s ² 4p	72.61 [Ar]3d ¹⁰ 4s ² 4p ²	74.92160 [Ar]3d ¹⁰ 4s ² 4p ³	78.96 [Ar]3d ¹⁰ 4s ² 4p ⁴	79.904 [Ar]3d ¹⁰ 4s ² 4p ⁵	83.80 [Ar]3d ¹⁰ 4s ² 4p ⁶
	4.3407 37 ² S _{1/2}	6.1132 38 S.	6.5615 39 ² D ₃₁₂	6.8281 40 ³ Fa	6.7462 41 ⁶ D.o.	6.7665 42 ⁷ S ₂	7.4340 43 ⁶ San	7.9024 44 ⁵ Fe	7.8810 45 ⁴ Faa	7.6398 46 ¹ S.	7.7264 47 ² S.m	9 3942 48 ¹ S.	5.9993 49 ² P ^o	7.8994 50 ³ P-	9.7886 51 ⁴ S ^o	9.7524 52 ³ Pa	11.8138 53 ² P ^o	13.9996 54 ¹ S.
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
5	Rubidium 85,4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	lodine 126.90447	Xenon 131.29
	[Kr]5s 4.1771	[Kr]5s ⁺ 5.6949	[Kr]4d5s* 6.2171	[Kr]4d*5s* 6.6339	[Kr]4d [*] 5s 6.7589	[Kr]4d°5s 7.0924	[Kr]4d [*] 5s [*] 7.28	[Kr]4d'5s 7.3605	[Kr]4d°5s 7.4589	[Kr]4d 8.3369	[Kr]4d ¹⁶ 5s 7.5762	[Kr]4d ¹⁰ 5s ² 8.9938	[Kr]4d ¹⁰ 5s ² 5p 5.7864	[Kr]4d ¹⁰ 5s ² 5p ² 7.3439	[Kr]4d ¹⁹ 5s ² 5p ³ 8.6084	[Kr]4d ¹⁰ 5s ⁴ 5p ⁴ 9.0096	[Kr]4d ¹⁰ 5s ² 5p ⁵ 10.4513	[Kr]4d ¹⁰ 5s ² 5p ⁶ 12,1298
	55 °S _{1/2}	56 's.	Y.	72 ³ F ₂	73 ⁴ F _{3/2}	74 °D ₀	75 °S _{5/2}	76 °D4	77 ⁴ F _{9/2}	78 ³ D ₃	79 ² S _{1/2}	80 's, Ha	81 ² P° _{1/2}	82 ³ P ₀	83 ⁴ S _{3/2}	84 ³ P ₂	85 ² P _{3/2} A+	86 ¹ S ₀
6	Cesium	Barium	N.	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
	[Xe]65	[Xe]6s ² 5 2117	N.	[Xe]4f ¹⁴ 5d ² 6s ² 6.8251	[Xe]4f ¹⁴ 5d ³ 6s ²	[Xe]4f ¹⁴ 5d ⁴ 6s ² 7 8640	[Xe]4f ¹⁴ 5d ⁵ 6s ² 7 8335	[Xe]4f ¹⁴ 5d ⁸ 6s ²	[Xe]4f ¹⁴ 5d ⁷ 6s ²	[Xe]4f ¹⁴ 5d ⁹ 6s	[Xe]4f ¹⁴ 5d ¹⁰ 6s	Xe]4f ¹⁴ 5d ¹⁰ 6s ¹	[Hg]6p	[Hg]6p ²	[Hg]6p ³	(209) [Hg]6p ⁴	(210) [Hg]6p ⁵	(222) [Hg]6p ⁶
	87_2S _{1/2}	88 ¹ S ₀		104 3F2?	105	106	107	108	109	110	111	112	0.1002		1,2030	0.417 1		10,7465
7	Francium	Ra	1	Rt Butherfordium	Db	Sg	Bh	HS	Mit	Uun	Uuu	Uub	Liqu	ids		For a	descrip	tion of
	(223) (Rn17s	(226) (Rn17s ²	1	(261) (Rn15f ¹⁴ 6d ² 7s ² 7	(262)	(263)	(264)	(265)	(268)	(269)	(272)	onanoidin	Gase	es		the a	tomic da	ta, visit
	4.0727	5.2784		6.0 ?					_					icially Pro	epared	priysic	Simol.gov	Tatornic
	Atomic Gr	ound-state	11	57 ² D _{3/2}	58 ¹ G ₄ °	59 ⁴ I _{9/2} °	60 ⁵ I ₄	61 ⁶ H ^o _{5/2}	62 ⁷ F ₀	63 ⁸ S ^o _{7/2}	64 ⁹ D ₂ °	65 ⁶ H ^e _{15/2}	66 ⁵ 1 ₈	67 ⁴ 1°	68 ³ H ₆	69 ² F ^o _{7/2}	70 ¹ S ₀	71 ² D _{3/2}
	58	100	1	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Symbo		6	1. 1.	138,9055	140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158,92534	162.50	Holmium 164.93032	167.26	168.93421	173.04	174.967
Nam	e Cer	ium	i, Y	5.5769	5.5387	5.473	5.5250	5.582	5.6436	5.6704	6.1501	5.8638	5.9389	6.0215	6.1077	6.1843	6.2542	5.4259
Atomi	c 140 t [Xe]4	.116 f5d6s ²	1	AC	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	5.5	387	1	Actinium (227)	Thorium 232.0381	Protactinium 231.03588	Uranium 238.0289	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)
Gro	ound-state	Ionization Energy (eV)	``	(Rn]6d7s ² 5.17	[Rn]6d ² 7s ² 6.3067	[Rn]5f ² 6d7s ² 5.89	[Rn]5f ³ 6d7s ² 6.1941	[Rn]5f ⁴ 6d7s ² 6.2657	[Rn]5f ⁵ 7s ² 6.0262	[Rn]5f ⁷ 7s ² 5,9738	[Rn]5f ⁷ 6d7s ² 5.9915	[Rn]5f ⁹ 7s ² 6.1979	[Rn]5f ¹⁰ 7s ² 6.2817	[Rn]5f ¹¹ 7s ² 6.42	[Rn]5f ¹² 7s ² 6.50	[Rn]5f ¹³ 7s ² 6.58	[Rn]5f ¹⁴ 7s ² 6.65	[Rn]5f ¹⁴ 7s ² 7p? 4.9 ?

Trapped ion quantum bits

lons with optical transition to metastable level: ⁴⁰Ca⁺,⁸⁸Sr⁺,¹⁷²Yb⁺

"optical qubit"

qubit manipulation requires ultrastable laser

$$\Psi = \alpha |\!\downarrow\rangle + \beta |\!\uparrow\rangle$$

lons with hyperfine structure: ⁹Be⁺, ²⁵Mg⁺, ⁴³Ca⁺, ¹¹¹Cd⁺, ¹⁷¹Yb⁺...

"hyperfine qubit"

qubit manipulation with microwaves or lasers (Raman transitions)

Qubit manipulation and measurement

Experimental sequence

1. Initialization in a pure quantum state

Experimental sequence

- 1. Initialization in a pure quantum state
- 2. Quantum state manipulation on $S_{1/2} D_{5/2}$ transition

Experimental sequence

- 1. Initialization in a pure quantum state
- 2. Quantum state manipulation on $S_{1/2} D_{5/2}$ transition
- 3. Quantum state measurement by fluorescence detection

Two ions:

Spatially resolved detection with CCD camera:

50 experiments / s

Repeat experiments 100-200 times

Ion-laser interaction

Qubit superposition states

Schrödinger picture:

 $|\psi(t=0)\rangle \propto |\downarrow\rangle + |\uparrow\rangle \longrightarrow |\psi(t)\rangle \propto |\downarrow\rangle + e^{-i\omega_0 t}|\uparrow\rangle$

Phase evolution: for optical qubits $\omega_0 \sim 10^{15} \text{ s}^{-1}$

Interaction picture:

 $|\psi(t)
angle \propto |\!\downarrow
angle \!+ |\!\uparrow
angle$ independent of time

 $|\psi(t)\rangle = \cos(\theta/2)|\downarrow\rangle + e^{i\phi}\sin(\theta/2)|\uparrow\rangle$

The phase ϕ of the superposition compares two oscillatory phenomena:

- Evolution of the Bloch vector in time
- Evolution of the electromagnetic field of the laser exciting the qubit

Ramsey spectroscopy for phase estimation

Resonant excitation in Bloch sphere picture

Example:
$$\phi=0 \longrightarrow H=\hbarrac{\Omega}{2}\sigma_x$$

Time evolution operator:

$$U = \exp\left(-\frac{i}{\hbar}Ht\right) = \exp\left(-i\frac{\Omega t}{2}\sigma_x\right) = \cos\left(\frac{\Omega t}{2}\right) - i\sin\left(\frac{\Omega t}{2}\right)\sigma_x$$

For
$$\theta = \Omega t = \pi/2$$

 $U|\downarrow\rangle = \frac{1}{\sqrt{2}}(I - i\sigma_x) = \frac{1}{\sqrt{2}}(|\downarrow\rangle - i|\uparrow\rangle)$

Resonant qubit excitation

Qubit manipulation

Resonant excitation

$$\begin{array}{c|c} |\uparrow\rangle \\ \hline & \downarrow \\ |\downarrow\rangle \end{array} \begin{array}{c} \omega_L = \omega_0 \\ H \propto \sigma_x \\ \text{or} \\ H \propto \sigma_y \end{array}$$

Off-resonant excitation

$$H\propto\sigma_z$$

ac-Stark shifts shift qubit transition frequency

Arbitrary Bloch sphere rotations can be synthesized by a combination of laser pulses.

Laser setup for manipulating the qubit

Addressing of individual ions with a focussed laser beam

- inter ion distance: ~ 4 µm
- addressing waist: ~ 2 µm
- < 0.1% intensity on neighbouring ions

Measuring qubits

detection errors $\sim 0.1\%$

Further quantum measurements

Coupling internal and vibrational degrees of freedom

Harmonic oscillator Quantum bit

motional states $|0\rangle, |1\rangle, |2\rangle, |3\rangle, \dots$

internal states $|\uparrow\rangle, |\downarrow\rangle$

Trapped-ion laser interactions

qubit manipulation

$$\omega_{laser} = \omega_0$$

$$H \propto \sigma_x, H \propto \sigma_y$$

Trapped-ion laser interactions

qubit manipulation

$$\omega_{laser} = \omega_0$$

$$H \propto \sigma_x, H \propto \sigma_y$$

qubit-motion coupling

$$\omega_{laser} = \omega_0 - \nu$$

 $H \propto \sigma_+ a + \sigma_- a^{\dagger}$

Trapped-ion laser interactions

 $\hbar\omega_0$

qubit manipulation

$$\omega_{laser} = \omega_0$$

$$H \propto \sigma_x, H \propto \sigma_y$$

 $\begin{array}{c|c} & |\uparrow, 2\rangle \\ \hline |\uparrow, 0\rangle & \hline & \sqrt{2}\eta\Omega \\ \hline & \eta\Omega \\ \hline & \eta\Omega \\ \hline & \eta\Omega \\ \hline & \downarrow, 1\rangle \\ \hline & \downarrow, 2\rangle \end{array}$

qubit-motion coupling

$$\omega_{laser} = \omega_0 - \nu$$

 $H \propto \sigma_+ a + \sigma_- a^{\dagger}$

$$\omega_{laser} = \omega_0 + \nu$$
$$H \propto \sigma_+ a^{\dagger} + \sigma_- a$$

Sideband excitation

$$H^{(i)} = \frac{\hbar\Omega}{2}\sigma_{+}e^{-i\delta t + i\phi} \left(I + i\eta(a^{\dagger}e^{i\nu t} + ae^{-i\nu t}) + \mathcal{O}(\eta^{2})\right) + \text{h.c.}$$

TO

<u>Red sideband:</u> $\delta = -\nu$

$$H_{int} = \frac{h\Omega}{2} i\eta \{\sigma_+ a e^{+i\phi} - \sigma_- a^{\dagger} e^{-i\phi}\}$$

$$|g,n
angle \longleftrightarrow |e,n-1
angle$$

'Jaynes-Cummings-Hamiltonian'

Coupling strength dependent on n

<u>Blue sideband:</u> $\delta = +\nu$

$$|g,n
angle \longleftrightarrow |e,n+1
angle$$

$$H_{int} = \frac{\hbar\Omega}{2} i\eta \{\sigma_+ a^{\dagger} e^{+i\phi} - \sigma_- a e^{-i\phi}\}$$

'anti-Jaynes-Cummings-Hamiltonian'

Coupling strength dependent on n

Coherent excitation on the sideband

"Blue sideband" pulses:

 $|\uparrow,2\rangle$

 $|\uparrow,1
angle$

Entangling a pair of trapped ions + detecting the entanglement

lon	Pulse length	Transition				

lon	Pulse length	Transition
1	π/2	blue sideband

lon	Pulse length	Transition
1	π/2	blue sideband
2	π	carrier

lon	Pulse length	Transition			
1	π/2	blue sideband			
2	π	carrier			
2	π	blue sideband			

Measuring the entangled state

We hope to create the state

$$\psi\rangle = \frac{1}{\sqrt{2}}(|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle)$$

There are no pure states in experimental physics!

The state created in the experiment has to be described by a density matrix ho_{exp} .

How can we analyze the state ρ_{exp} we created?

Measuring the entangled state

We hope to create the state

$$\psi\rangle = \frac{1}{\sqrt{2}}(|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle)$$

There are no pure states in experimental physics!

The state created in the experiment has to be described by a density matrix ho_{exp} .

How can we analyze the state ρ_{exp} we created?

Option 1:

Measure how close ρ_{exp} is to $|\psi\rangle$ by measuring the fidelity $F = \langle \psi | \rho_{exp} | \psi \rangle$

Option 2:

Carry out measurements that allow to completely determine ρ_{exp}

 \rightarrow Quantum state tomography

Reconstruction of the density matrix

Representation of ρ as a sum of orthogonal observables A_i :

$$\rho = \sum_{i} \lambda_i A_i \text{ with } Tr(A_i A_j) = \delta_{ij}$$

 ρ is completely detemined by the expectation values <A_i> :

$$\langle A_j \rangle = Tr(\rho A_j) = \sum_i \lambda_i Tr(A_i A_j) = \lambda_j$$

For a two-ion system : $A_i \in \{\sigma_i^{(1)} \otimes \sigma_j^{(2)}, \sigma_i \in \{I, \sigma_x, \sigma_y, \sigma_z\}\}$

Joint measurements of all spin components

$$\sigma_i^{(1)}\otimes\sigma_j^{(2)}$$

$$\rho_R = \sum_{i=1}^{16} \langle A_i \rangle A_i$$

Measurement of spin expectation values

Measurement of $\langle \sigma_z \rangle$: Fluorescence measurement

$$\langle \sigma_z \rangle = \rho_{\uparrow\uparrow} - \rho_{\downarrow\downarrow}$$

= $\rho_{DD} - \rho_{SS}$

Rotation of the Bloch sphere prior to state measurement:

$$\langle \sigma_z \rangle_{U\rho U^{-1}} = Tr(\sigma_z U\rho U^{-1})$$
$$= Tr(\underbrace{U^{-1}\sigma_z U\rho}_{\stackrel{!}{=}\sigma_x})$$

Bell state analysis

Measurement of $\langle \sigma_z \rangle$:

$$\langle \sigma_z \rangle \qquad = \rho_{\uparrow\uparrow} - \rho_{\downarrow\downarrow}$$

Measurement of $\langle \sigma_x \rangle$, $\langle \sigma_y \rangle$:

Rotation of the Bloch sphere prior to state measurement:

prepare Bell state 200 repetitions no rotation $\langle \sigma_z^{(1)} \rangle, \langle \sigma_z^{(2)} \rangle, \langle \sigma_z^{(1)} \sigma_z^{(2)} \rangle$ measure prepare Bell state 200 repetitions ion #1, y - rotation ion #2, identity $\langle \sigma_x^{(1)} \rangle, \langle \sigma_z^{(2)} \rangle, \langle \sigma_x^{(1)} \sigma_z^{(2)} \rangle$ measure **9 different** settings prepare Bell state 200 repetitions ion #1, x - rotation ion #2, x - rotation $\langle \sigma_{y}^{(1)} \rangle, \langle \sigma_{y}^{(2)} \rangle, \langle \sigma_{y}^{(1)} \sigma_{y}^{(2)} \rangle$ measure

Example: Tomography of a qubit

The experimental procedure prepares the state ρ_{prep}

$$ho_{prep} = rac{1}{2} (I + \langle \sigma_x
angle \sigma_x + \langle \sigma_y
angle \sigma_y + \langle \sigma_z
angle \sigma_z)$$

Reconstruction by estimation of $\langle \sigma_x \rangle, \langle \sigma_y \rangle, \langle \sigma_z \rangle$ using a finite number of copies of the state:

$$egin{aligned} s_{m{z}} &= rac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} \;, \; s_{m{x}} = \dots, \; s_{m{y}} = \dots \ &
ho_{tomo} &= rac{1}{2}(I + s_{m{x}}\sigma_{m{x}} + s_{m{y}}\sigma_{m{y}} + s_{m{z}}\sigma_{m{z}})
eq
ho_{prep} \end{aligned}$$

Ptomo might not be within the Bloch sphere !

Maximum likelihood estimation

Is $\rho_R = \sum_i \langle A_i \rangle A_i$ positive semidefinite ? ... not necessarily:

with a finite number of measurements, we can only estimate expectation values

Maximum likelihood estimation:

(Hradil '97, Banaszek '99)

In N experiments, the quantum state is projected onto the outcomes $|y_j\rangle$.

 f_j : relative frequency of the outcome $|y_j
angle$

On the set of density matrices ρ , look for the one that maximizes

$$\mathcal{L}(\rho) = \prod_{j} \langle y_j | \rho | y_j \rangle^{N f_j}$$

Maximize
$$L(\rho) = \sum_j f_j \log \langle y_j | \rho | y_j \rangle$$

Bell state reconstruction with maximum likelihood estimation

- State fidelity: $\langle \psi | \rho_{tomo} | \psi
 angle = 0.91$
- Violation of a Bell inequality: $\langle \rho_x^{(1)} \rho_{x-z}^{(2)} \rangle + \langle \rho_x^{(1)} \rho_{x+z}^{(2)} \rangle + \langle \rho_z^{(1)} \rho_{x-z}^{(2)} \rangle \langle \rho_z^{(1)} \rho_{x+z}^{(2)} \rangle = 2.52(6) > 2$
- Entanglement of formation: $E(\rho_{tomo}) = 0.79$

Pulse sequence:

$$\begin{array}{ccc} |DSS1\rangle & ---- |SDS1\rangle & ---- |SSD1\rangle \\ |DSS0\rangle & ---- |SDS0\rangle & ---- |SSD0\rangle \end{array}$$

 $\ket{DDS,\mathsf{0}}$

W – state: |SDD> + |DSD> + |DDS>

Reconstructed W – state: experiment and theory

$$|\Psi\rangle = \frac{1}{\sqrt{3}}(|SDD\rangle + |DSD\rangle + |DDS\rangle)$$

experimental result

theoretical expectation

C. F. Roos et al., Science **304**, 1478 (2004)

More ions: Four-ion W-states

Five-ion W-states

 $\Psi_5 = \frac{1}{\sqrt{5}} (|DDDDS\rangle + |DDDSD\rangle + |DDSDD\rangle + |SDDDD\rangle + |SDDDD\rangle)$

Six-ion W-states

 $\Psi_{6} = \frac{1}{\sqrt{6}} (|DDDDDS\rangle + |DDDDSD\rangle + |DDDSDD\rangle + |DDSDDD\rangle + |DSDDDD\rangle + |SDDDDD\rangle)$

729 settings, measurement time: 40 minutes

Seven-ion W-states

2187 settings, measurement time: 2 hours

Eight-ion W-states

H. Häffner et al., Nature 438, 643 (2005)

6561 settings, measurement time: 10 hours