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Relaxation of a harmonic oscillator"

•  We have derived the Lindblad master equation for a two-level system: 
 
 
 
 
 
 
 
 
 
"

•  Alternatively, one can consider the relaxation of a quantised harmonic 
oscillator. This is sometimes called the Quantum Brownian Motion 
problem. Instead of starting from the microscopic derivation (which 
follows similar lines as the two-level atom derivation), let us just state 
the final result and then some aspects related to it."
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Relaxation of a harmonic oscillator"

•  If the oscillator is described by operators "         then we have 
 
 
and if the interaction with the reservoir causes a lowering or raising the 
oscillator state by one quantum, then we get eventually 
 
 
 
 
 
 
 
 
 
which is similar to the two-level atom (both lowering and raising 
appear as their own Lindblad terms). " "
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Relaxation of a harmonic oscillator"

•  As a next step we can look at the dynamics of the expectation value 
 
 
 
 
 
 
 
 
 
 
 
 
where one has used the relation "
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Relaxation of a harmonic oscillator"

•  The solution to the equation is simple: 
 
 
 
"

•  This shows that, as long as C>A, the amplitude is damped in the way 
expected from a classical solution. This behavior relates to the 
expectation value only. The operator cannot be damped as this would 
violate the commutation rules. The correct behavior of the operator is 
restored by the quantum fluctuations of the environment effecting the 
damping."

•  If C<A, the equations describe a quantum amplifier. This description 
is, however, incomplete, because the exponential growth can continue 
for a limited period only. After that nonlinear saturation effects must set 
in and limit the growth."
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Relaxation of a harmonic oscillator"

•  Let us next consider the expectation value of a proper observable: 
 
 
 
 
 
 
which is the same as 
 
 
"

•  For C>A this agrees with the damping of the amplitude but the 
inhomogeneous term displays the effects of the fluctuations deriving 
from the environment providing the damping. In steady state, we have"
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Relaxation of a harmonic oscillator"

•  From 
 
 
 
we see that for a reservoir providing no amplification, A=0, the 
oscillator relaxes to its ground state. With a thermal reservoir, 
however, we expect the steady state to be of thermal character 
 
 
 
"

•  This implies the detailed balance condition 
 
and thus 
 
 
with"
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Two-level system revisited"

•  For the two-level system with Bloch vector description we have earlier 
given the equation 
 
 
"

•  One the other hand, we have derived for longitudinal noise (change of 
state) the microscopic master equation. The transverse noise can be 
added easily and thus we get"
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Two-level system revisited"

•  So now in the equation 
 
 
 
we have 
 
 
 
 
 
 
 
where A and C depend on the temperature of the environment 
(Remember: C is for damping, A for gain). For T = 0 we have only 
damping and "      "  , otherwise"
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Two-level system revisited"

•  The master equation is actually a very robust way to describe 
dynamics. We can e.g. add to the system Hamiltonian terms that 
couple the original states. 
"

•  Another situation occurs frequently in laser spectroscopy. We often 
use some truncated set of energy eigenstates, but can still have decay 
out of the system. This is described by adding simply to the relevant 
energy states decay terms that reduces the population, i.e., we give 
their energy some imaginary contribution. In atomic collision physics 
these are called optical potentials as they may depend on position. 
"

•  We can also add simply a constant to the right-hand side of the master 
equation. In laser spectroscopy this stands for pumping the truncated 
state. Together with the decay terms they usually lead to a steady 
state for the system."



Department of Physics and Astronomy 
University of Turku, Finland 

Decoherence in quantum registers"

•  Let us consider again the case of pure decoherence for a quantum bit. 
Qubits can form a register and we can ask the crucial question: how 
does the decay of coherences scale with the number of qubits?  
"

•  We start with a system of two qubits. Now we need to assign them 
positions as well 
 
 
 
 
"

•  In the interaction picture we get"

of collective interaction on the complexity analysis, when such effects need

to be taken into account.

We will start by considering a system of two qubits at positions ra, rb re-

spectively. Their dynamics is described by the following Hamiltonian
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Hamiltonian (25) is a straightforward generalization of (12) where g
a
k, g

b
k

are position dependent couplings. In (25) we are not considering any direct

interaction between the two qubits which would be necessary for the condi-

tional dynamics (Barenco et al 1995). Here we concentrate our attention to

the simplest case of a system of two qubits coupled only to the environment.

In the interaction picture the time evolution operator takes the form
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Here again the unitary evolution produces entanglement between register

states and environment states. It should be noted however that U(t) acts as

a displacement operator on the field with a displacement amplitude depend-

ing on the logic value of both qubits of the register. The following simple

example will help to clarify this point. Let us consider the following two

initial states

|Φ(−)� = (c10|1a, 0b�+ c01|0a, 1b�)⊗ |0k�, (27)

|Φ(+)� = (c00|0a, 0b�+ c11|1a, 1b�)⊗ |0k�, (28)

where we consider for simplicity only the vacuum state of the k mode and

where the cij are arbitrary complex amplitudes. Due to the qubit-field

interaction the system will evolve into the states
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Decoherence in quantum registers"

•  Let us for simplicity assume that T = 0. In addition, we select two 
different initial states 
 
 
 
"

•  The time evolution of these states in then 
 
 
 
"

•  This shows an interesting result: as the two qubits approach each 
other, the decoherence is removed for the first state and enhanced by 
factor of 2 for part of the second state. 
"

•  This leads to the idea of using a subspace of a two-qubit system as a 
qubit. It is an example of Decoherence-Free Subspaces (DFS). "
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Decoherence in quantum registers"

•  Let us continue with some general reduced density matrix for the two-
qubit system: 
 
"

•  Using again the displacement operators one can show that 
 
"

•  The interesting case is that if " ", we see collective decay"

Since the amount of decoherence is measured by the overlap between the
two different field states with which the qubit states become entangled, the
states |Φ(+)�, |Φ(−)� will be characterized by different decoherence times. In
particular, in the limit ra ≈ rb we have ξa

k ∼ ξb
k and therefore in the ”sub-

decoherent” state |Φ(−)� the qubits are not entangled with the field, while
in the ”superdecoherent” state |Φ(+)� the qubits are collectively entangled
with a coherent state with an amplitude which is twice that of the single
qubit case.

We can formulate in more rigorous terms the analysis we have just sketched
above by taking into account all the modes of the field in thermal equi-
librium. We will again concentrate our attention on the reduced density
matrix of the two qubit system whose matrix elements can be conveniently
expressed as

ρiaja,ibjb
(t) = �ia, ib|TrR{�(t)}|ja, jb�. (31)
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where R = ra − rb.

The origin of the position dependence of the collective decay constants
Γ±(R, t) can be easily explained both in semiclassical and in quantum terms.
We have already mentioned that in a system of two qubits the entanglement
with the field will in general depend on the qubit separation. In a semiclas-
sical picture if the distance between the two qubits is smaller than the cor-
relation length of the bath they “feel” the same fluctuation. More generally
the random phase-shifts due to the bath fluctuations of wavelength shorter
than the inverse of the qubit separation are the same for both qubits. This
produces a reduction - or an enhancement - of the decay rates depending
on whether the phase shifts on the two qubits add or subtract.

In order to avoid possible confusions it must be stressed that the phe-
nomenon of superdecoherence vs. subdecoherence that we have just de-
scribed is not the same as the process of superradiance vs. subradiance
more commonly encountered in litterature (see e.g Allen & Eberly 1975).
While superdecoherence is due to collective entanglement between qubits
and environment with no exchange of energy, superradiance is a process of
collective radiation by a group of closely spaced atoms. Indeed the condi-
tions for the two processes to occur are quite different: superdecoherence
requires the qubit to be in a region of space smaller than the coherence
length of the environment, which is a much more stringent condition that
the one needed for superradiance to take place, i.e. that the atoms are at a
distance smaller than the wavelength of the resonant field modes. Further-
more, it must be noted that some superradiant states are subdecoherent.
In general the set of states which are robust against the dephasing action
of the environment will depend on the specific form of qubit-environment
coupling.

In the one-dimensional and three-dimensional field cases, the collective de-
cay constants are, respectively, given by

Γ±
1D(R, t) ∝ 2

� ∞

0
dωe−ω/ωc coth

�
ω

2T

�
1− cos ωt

ω
[1 ± cos(ωts)] (37)

Γ±
3D(R, t) ∝ 2

� ∞

0
dωωe−ω/ωc coth

�
ω

2T

�
(1−cos ωt)

�

1 ± sin(ωts)

ωts

�

(38)

where we have introduced the transit time ts (ωts = k · R).

The analysis carried out for a two-qubit register can be easily extended to
the case of a register of L qubits, whose density matrix elements can be
written as

ρ{in,jn}(t) = �il−1, iL−2..., i0|TrR{�(t)}|jL−1, jL−2, ..., j0� (39)
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Decoherence in quantum registers"

•  We can define a transit time between the qubits as 
Then the two decay rates for finite temperature, normalised to cutoff 
frequency, "             , look like "
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where we have introduced the transit time ts (ωts = k · R).

The analysis carried out for a two-qubit register can be easily extended to
the case of a register of L qubits, whose density matrix elements can be
written as

ρ{in,jn}(t) = �il−1, iL−2..., i0|TrR{�(t)}|jL−1, jL−2, ..., j0� (39)
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Figure 4: Decoherence of a single qubit for a one-dimensional field density

of states for ωc/T = 100 . Time is in units of T−1
and the proportionality

factor is equal to 0.1. The three decay regimes can be easily identified.

Figure 5: Decoherence of a single qubit as a function of time and of the

ratio η = ωc/T . Time is in units of T−1
and the proportionality factor has

been set equal to 0.1. Here (a) shows the result of a numerical integration

of Eq. (22) for the one-dimensional density of states while (b) shows of the

exact solution for the three-dimensional density of states (Eq.24)

Figure 6: The decay of two qubit coherence in the case of the shared reser-

voir with one-dimensional density of states (Eq. 37). We have set η = 1 and

the proportionality factor is chosen such that at the limit of large ts we get

the results of Fig. 5(a). In (a) we see how the decay is cancelled out , and

in (b) we see how it is amplified , when ts is small. The onset of decay does

not change with ts.

Figure 7: The decay of two qubit coherence in the case of the shared reser-

voir with three-dimensional density of states (Eq. 38). We have set η = 1

and the proportionality factor is chosen such that at the limit of large ts we

get the results of Fig. 5(b). In (a) we see how the decay is cancelled out,

and in (b) we see how it is amplified, when ts is small. The saturation of

the decay is present in both cases, though.
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Decoherence in quantum registers"

•  The two-qubit situation can be extended into the general L-qubit case. 
For 
 
 
it turns out that in the limiting case of all qubits at the same position we 
get  
 
 
 
whereas for qubits having independent environments the decay rate 
scales linearly with L. 
"

•  Thus the case of having the same environment for all qubits is a 
double-edged sword: a) in general the decoherence rates scale badly, 
but b) one can have also very slowly decohering state combinations."

where R = ra − rb.
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where we have introduced the transit time ts (ωts = k · R).

The analysis carried out for a two-qubit register can be easily extended to
the case of a register of L qubits, whose density matrix elements can be
written as

ρ{in,jn}(t) = �il−1, iL−2..., i0|TrR{�(t)}|jL−1, jL−2, ..., j0� (39)
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= ρ{in,jn}(0)

×
�

k

Trk

�
RkT D[(iL−1 − jL−1)ξ

(L−1)
k ]D[(iL−2 − jL−2)ξ

(L−2)
k ]

....D[(i0 − j0)ξ
(0)
k

�
.

From the viewpoint of the following complexity analysis it is interesting to
consider the limiting case in which all the qubits of the register are in the
same position. In this case all the ξ(i)

k are equal and the matrix elements
with the fastest decay are ρ{1n,0n} and ρ{0n,1n} for which we have

ρ{1n,0n} = ρ{1n,0n}(0)e−L2Γ(t). (40)

In general,

ρ{in,jn}(t) = ρ{in,jn}(0)
�

k

Trk

�

RkT D

�
L−1�

n=0

(in − jn)ξk

��

= ρ{in,jn}(0) exp




−
�����

L−1�

n=0

(in − jn)

�����

2

Γ(t)




 (41)

which should be compared with the expression for the decoherence in the
case of independent reservoirs

ρ{in,jn}(t) = ρ{in,jn}(0) exp

�

−
L−1�

n=0

|(in − jn)|Γ(t)

�

(42)

where
�L−1

n=0 |(in − jn)| is the Hamming distance between the two qubit
states. In the independent reservoir case therefore in the worst case the
density matrix elements decay as exp{−LΓ(t)}.

6 Discussion and Conclusions

Our analysis shows that decoherence destroys quantum interference and en-
tanglement in quantum computers, thus decreasing the probability of suc-
cessful computation exponentially with the input size L. Reservoirs with
large coherence lengths introduce only asymmetry in the decoherence rates
of various off-diagonal elements of the density matrix with the same Ham-
ming distance between its indices (compare Eq. (41) with Eq. (42)). In
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Decoherence in quantum computing: example"

•  Let us just briefly consider a 
basic quantum computing 
operation such as the Discrete 
Fourier Transformation. "

U =

1 1 1 ! 1
1 ! !2 ! !2

L "1

1 !2 !4 ! !2(2
L "1)

" " " # "

1 !2
L "1 !2(2

L "1) ! !( 2
L "1)

2

#

$

%

&

= e
2!/2Li

"

T

Original register content
T T

2L/T

Fourier  transform

Quality factor Q = sum of the red areas
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Network for DFT"
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Noise in DFT"

•  We introcude after each 
computational step a 
phase kick that has a 
random strength given 
by a Gaussian 
distribution with a width 
delta.  
"

•  This introduces noise 
that affects the quality 
factor Q. How does this 
noise scale for a fixed 
delta as a function of 
the qubit number L? 
"

•  A. Barenco et al., Phys. 
Rev. A 54, 139 (1996)."
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Noise in DFT"
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Noise in approximate DFT"
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Unravelling of the master equation"

•  As mentioned before, the system dynamics may become difficult to 
calculate even if the master equation is known, since if the state space 
dimension is D, the density matrix has D2-1 a priori independent 
elements. 
"

•  Example: for a wave packet " " "  so that the 
density matrix now contains correlations between positions. 
"

•  Such situations arise e.g. in laser cooling of atoms, or laser-assisted 
ultracold collisions between atoms. 
"

•  On the other hand, if we consider the density matrix as representing 
an ensemble of single quantum systems, we can ask if the time 
evolution can be regarded as an ensemble of single system histories 
(or trajectories). 
"

•  There is a physical justification to this view: Quantum jumps!

|Ψ(x, t)� → ρ(x, x�, t)
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Quantum jumps"

Old quantum mechanics & Niels Bohr (1910’s): 
 
– change of a quantum state by an instantaneous jump 
   (e.g. photon absorption and emission). 
 
Ensemble dynamics & Schrödinger (1920’s): 
 
– Superpositions and probability interpretation. 
 
– Deterministic evolution of probability amplitudes. 
 
 
 
– Measurable with an infinite number of identical systems  
   (ensemble). 
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Bohr vs. Schrödinger"

Schrödinger: 
 
“If all this damned quantum jumping were really to 
stay, I should be sorry I ever got involved with quantum 
theory.” 
 
Bohr: 
 
“But we others are very grateful to you that you did, 
since your work did so much to promote the theory.” 

R.J. Cook: Quantum jumps, Prog. in Optics XXVIII, Elsevier, 1990 
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Bohr vs. Schrödinger"
"We never experiment with just one electron
or atom or (small) molecule. In thought
experiments, we sometimes assume that we do;
this invariably entails ridiculous consequences.
In the first place it is fair to state that we are
not experimenting with single particles any
more than we can raise ichthyosauria in the
zoo."

Erwin Schrödinger in 1952

Superpositions and interference. 
Probability amplitudes with deterministic dynamics. 
Realised in ensembles. 
Single system dynamics is not a meaningful concept (random future). 
 

 Single systems themselves are not meaningful? 
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Trapped ion"

A photograph of a single ion in 
an electromagnetic trap 
 
(Dehmelt & Toschek, Hamburg 
1980) 
 
The ion is excited by laser light 
from the electronic ground state 
to an excited state. 
 
Excited ion returns to ground 
state by emitting a photon 
spontaneously. 
 
We ”see” the ion! 
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Detection scheme"

Mercury ion Hg+ 

Metastable state 

Fluorescent state 

W.M. Itano, J.C. Bergquist, and D.J. Wineland, Science 37, 612 (1987)  
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Trapping to the metastable states"

W.M. Itano, J.C. Bergquist, and D.J. Wineland, Science 37, 612 (1987)  
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Ensemble behaviour: exponential decay"
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Jumping photons"

Nature 446, 297 (2007) - March 15 
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Rydberg states and microwave cavities"

Rydberg state atoms are used to 
manipulate and detect the photon 
states in the cavity. 
 
Only one cavity mode is near-
resonant with the ”e-g” 
transition. 
 
If the cavity is initially empty, i.e., 
photon number n = 0, an atom 
comes out in state g. 
 
If there is a photon, the atom 
comes out in state e.  
 
– and the photon survives! QND 
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Cavity thermodynamics"

But the cavity is at a finite 
temperature T= 0.8 K. 
 
Thermal occupation of cavity 
modes. 
 
Excitation from g to e is 
possible. 
 
For resonant mode <n> << 1. 
 
Only integral photon numbers 
can be observed for single 
atoms.  
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Photon state change by jumps"

Repeat: Only integral photon 
numbers can be observed for 
single atoms.  
 
So, to obtain <n> << 1 on 
average, we need to have 1 
photon in the cavity for a finite 
and short time. 
 
This is seen in experimental 
data 
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Ensemble average"

Key point: 
 
We recover the ensemble result in the 
limit of (infinitely) many realisations 
as an average. 
 
Recent work: prepare n>1, observe 
the integer step decay into n=0 
 
•  Guerlin et al., Nature 448, 889 (23 

August 2007). 
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Summary"

We see that  
 
a)  One can observe single system dynamics 

b)  Quantum jumps are an integral part of them 
 

c)  They are caused by the interaction of a small-scale 
system with an inifinite environment 

d)  An average of many such different and seemingly 
random ”telegraphic” signals (histories or trajectories) 
produces the ensemble average 
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Simulation by jumps"

We can turn the idea around: 
 
a)  We have a system that we want to study 

b)  The ensemble solution is difficult to calculate 
 

c)  Invent a fictitious quantum jump scheme to generate 
single system histories and build the directly 
unaccessible ensemble from them and possibly obtain 
some insight as well 
 

d)  The basis for the jump scheme is obtained from the 
master equation in Lindblad form 

  

! 

d" t( )
dt

=
1
i!

HS ,"[ ] + #m
m
$ Cm"Cm

†
%
1
2

#m
m
$ Cm

†
Cm" + "Cm

†
Cm( )
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Master equation and jump processes"

A possible interpretation for the Master equation (Lindblad form) 

  

! 

d" t( )
dt

=
1
i!

HS ,"[ ] + #m
m
$ Cm"Cm

†
%
1
2

#m
m
$ Cm

†
Cm" + "Cm

†
Cm( )

The positive constants       are related to the probabilities 
to perform a quantum jump given by the operator Cm. 
 
Note that the choice of the system basis or the set of 
operators C is not unique. It can correspond to a viable 
detection scheme but does not have to. 
 
In quantum information one can actually consider 
measurements and interaction with a reservoir as the two 
sides of the same coin. 
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Monte Carlo Wave Function Method"

Thus we can unravel the ensemble dynamics given by 

  

! 

d" t( )
dt

=
1
i!

HS ,"[ ] + #m
m
$ Cm"Cm

†
%
1
2

#m
m
$ Cm

†
Cm" + "Cm

†
Cm( )

into a set of single system histories i.e. deterministic time evolution 
perturbed by random quantum jumps. 
 
 
 
This leads to a very efficient simulation method. 

   
 Monte Carlo Wave Function (MCWF) method, 

 
Dalibard, Castin & Mølmer, PRL 68, 580 (1992); 
Mølmer, Castin & Dalibard, JOSA B 10, 527 (1993). 
 

! 

"(t) = Pi
i
# (t) $i(t) $i(t)



Department of Physics and Astronomy 
University of Turku, Finland 

Monte Carlo Wave Function Method"

Example: A driven two-state atom + electromagnetic modes 

single history 
 

ensemble average 
 

Dalibard, Castin & Mølmer, PRL 68, 580 (1992). 
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To generate an ensemble member"

Solve the Schrödinger equation. 
 
Use a non-Hermitian Hamiltonian H 
which includes a decay part Hdec. 
 
Jump operators Cm can be found from 
the dissipative part of the Master 
equation. 
 
Effect of the non-Hermitian Hamiltonian: 
For each time step, the shrinking of the 
norm gives the jump probability P. 
 
For each channel m the jump probability 
is given by the time step size, decay 
rate, and decaying state occupation 
probability. 

  

! 

i! d
dt

"(t) = H "(t)

! 

H = Hs +Hdec

  

! 

Hdec = "
i!
2

#m
m
$ Cm

†
Cm

! 

P = "pm
m
#

! 

"pm = "t#m $ Cm
†
Cm $
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Two-state atom example"

Jump operator 
 
 
 
Non-Hermitian Hamiltonian 
 
 
 
 
Jump probability (and change of norm) 

g 

e 

! 

C = " g e

  

! 

Hdec = "
i!#
2

e e

! 

P = "p = "t# ce
2
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The algorithm"

1. time-evolution over 

! 

"t

2. generate random number, did quantum jump occur ?

no yes

3. renormalize 

! 

#  before new time step

3. apply jump operator 

! 

Cj  before new time step

4. At the end of time-evolution, take ensemble average

! 

"p <$

! 

"p >$
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Equivalence with the ensemble dynamics"

The state of the ensemble averaged over time step 
(for simplicity here: initial pure state and one decay channel only):  

Keeping in mind two things: 
a) the time-evolved state is                      b) the jump probability is 

Average 

”No-jump” path weight 
t-evol. and normalization 
 Jump and normalization 

 
”Jump” path weight 

This gives ”sandwich” term of the m.e. This gives comm. + anticomm. of  m.e. 

! 

"(t +#t) = (1$ P)
%(t +#t) %(t +#t)

1$ P
+P

C &(t) &(t)C
†

&(t)C
†
C &(t)

  

! 

"(t +#t) = 1$ iHs#t
!

$
%#t
2
C
†
C

& 
' 
( 

) 
* 
+ ,(t)

! 

P = "t# $ C
†
C $
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Unravelling of master equation: Summary"

•  We can treat the open system dynamics as an ensemble of single 
wave vector histories, where the deterministic evolution (driven by a 
non-Hermitean Hamiltonian, though) is now perturbed by random 
jumps: Piecewise Deterministic Process. 
"

•  The method is very powerful and in some cases can be given a real 
measurement interpretation. 
"

•  There are other approaches as well, based on either jumps or 
incremental noise terms (Quantum State Diffusion method)."
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Non-Markovian open quantum systems"

•  Non-Markovianity implies that there are memory effects. 
"

•  Basic treatment is the Nakajima-Zwanzig projection method, which 
produces an integral involving the density matrix and a memory 
kernel. Problem: usually not easy to solve, and even harder to 
simulate. 
"

•  The spectral structure may be unusual, concentration around one or 
more energies (e.g. Lossy cavity mode, photonic bandgap materials). 
"

•  There is a finite duration for any energy or information to spread inside 
the reservoir, and thus there is a possibility that some of it may come 
back to the system: memory effect . 
"

•  This leads to non-Markovian dynamics. For some cases it can be 
handled with the time-convolutionless method (TCL)."
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Microscopic view on non-Markovian dynamics"

•  Consider the Redfield equation again 
 
 
 
"

•  It was obtained by assuming initially uncorrelated system and 
environment, an unchanging environment (Born) and replacing 
 
"

•  The last action formed a part of the Markov approximation. But we do 
not have the take the integration limit to infinity. Without going into 
details we see that we will get decay rates that depend on time. 
"

•  The key issue is that the more advanced methods (TCL) show that 
this “partially Markovian” approach gives a consistent master equation 
up to the second order."

dρS(t)
dt

= − 1
�2

� t

0
dt

� TrE ([HSE(t), [HSE(t�), ρS(t)⊗ ρE ]])

ρS(t�)→ ρS(t)
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Microscopic view on non-Markovian dynamics"

•  Thus the non-Markovian are given by the time-local master equation 
 
 
 
 
Non-Markovian effects lead to time-dependent decay rates Δm(t). 

 
Δ>0:  Lindblad-type 
Δ<0:  non-Lindblad-type 

  

! 

d" t( )
dt

=
1
i!

HS ,"[ ]+ #m(t)
m
$ Cm"Cm

†
%
1
2

#m
m
$ (t) Cm

†
Cm" +"Cm

†
Cm

& 
' 
( 

) 
* 
+ 

Decay can have temporarily 
negative values but integral 
of decay over time has to be 
always positive (to obtain CP). 
 
And quantum jumps? 
 

Markovian value 
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Microscopic view on non-Markovian dynamics"

•  Thus the non-Markovian dynamics is given by the master equation 
 
 
 
 
with  
 
 
"

•  Examples of physical systems are e.g. and atom coupled with a single 
but leaky cavity mode:"
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C! = !
i,j:

!j−!i=!

dij"i#$j" , %32&

where dij = $i"%−D&"j# / D̂ is the dimensionless value of the
matrix element of the dipole moment operator D %dimen-
sional unit D̂&. It is convenient to pass to the continuum limit
of environmental modes "k such that !k"#k"2→'d"J%"&.
Here, #k describes the coupling strength between the system
and the reservoir mode "k and J%"& is the spectral density of
electromagnetic modes (1). Considering only the zero-
temperature environment, where all the modes are initially
empty, each decay channel is related to a time-dependent
decay rate

$!%t& = 2*
0

t

ds*
0

%

d"J%"&cos(%" − !&s) . %33&

The interaction with the reservoir introduces a renormal-
ization of the system Hamiltonian HS by a Hermitian term,
i.e., the Lamb-shift Hamiltonian

HLS%t& = &!
!

'!%t&C!
† C!, %34&

where the time-dependent rate factor is

'!%t& = *
0

t

ds*
0

%

d"J%"&sin(%" − !&s) . %35&

We label the different Bohr frequencies by +! j,, where j
=1, . . .. Correspondingly, the jump operators are Cj -C!j and
the decay rates are $ j%t&-$!j%t& and ' j%t&-'!j%t&. Then, the
time-local master equation in the interaction picture is in the
form of Eq. %11&, where system Hamiltonian HS has been
replaced by HLS%t&.

The spectral density of the electromagnetic field inside an
imperfect cavity is well approximated by a Lorentzian distri-
bution

JLorentz%"& =
#2

2(

)

%" − !cav&2 + %)/2&2 , %36&

where #2 is a coupling constant, !cav is the resonance fre-
quency of the cavity, and ) characterizes the width of the
distribution. The essential parameter in this case is the detun-
ing * j -!cav−! j of the Bohr frequency with respect to the
cavity resonance frequency.

Since the cavity supports only modes residing close to its
resonance frequency !cav, only transitions whose Bohr fre-
quencies are close to this value contribute to the dynamics.
This justifies the description of the atom’s Hilbert space con-
sisting effectively of only two or three levels, which we now
study.

B. Units and parameters

In the examples, the time scale is set by the inverse of the
spectral distribution width )−1. The resonance frequency is
assumed to be large !cav+). The Markovian time scale is
then ,M .10)−1 (cf. convergence of the decay rates to steady

Markovian values in, e.g., Fig. 4%a&). In the Jaynes-
Cummings model, the coupling constant is set to #2=5 and
in the three-level systems it is #2=2. The dipole moment
matrix elements are always assumed to be dij =1 for all pairs
of states i! j. In the numerical simulations the time step size
is *t=0.01)−1 and the size of the ensemble is N=105. The
notation of atomic levels is the same as in Fig. 2.

C. Results

For the sake of comparison, we solve the master equation
in two different ways. First, we solve the density matrix by
using the NMQJ method. Second, we calculate the formal
analytical solutions of the equations of motion of the indi-
vidual density-matrix components %expressions are given in
Appendix B&. The results are then compared in order to
verify the functionality of our method.

1. Two-level atom: Detuned Jaynes-Cummings model

The two-level case involves only one Lindblad operator
C1=-−= "b#$a", which is the usual lowering operator from the
excited to the ground state. We choose the detuning *1=5)
and the Fig. 4%a& shows the oscillatory behavior of the cor-
responding decay rate $1%t&. The initial state is a pure state
.%0&= "/0%0&#$/0%0&", meaning that all the N ensemble mem-
bers are initially in the same state "/0%0&#. In our example
"/0%0&#= %3"a#+2"b#& //13.

For the given single jump operator and an initial state
including a finite-excited-state component, there will be only
two kinds of states contributing to the master-equation solu-
tion. This is because according to the unraveling in Eq. %2&,
the global phase factors of the single ensemble members do
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where dij = $i"%−D&"j# / D̂ is the dimensionless value of the
matrix element of the dipole moment operator D %dimen-
sional unit D̂&. It is convenient to pass to the continuum limit
of environmental modes "k such that !k"#k"2→'d"J%"&.
Here, #k describes the coupling strength between the system
and the reservoir mode "k and J%"& is the spectral density of
electromagnetic modes (1). Considering only the zero-
temperature environment, where all the modes are initially
empty, each decay channel is related to a time-dependent
decay rate

$!%t& = 2*
0
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ds*
0
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The interaction with the reservoir introduces a renormal-
ization of the system Hamiltonian HS by a Hermitian term,
i.e., the Lamb-shift Hamiltonian

HLS%t& = &!
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where the time-dependent rate factor is
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We label the different Bohr frequencies by +! j,, where j
=1, . . .. Correspondingly, the jump operators are Cj -C!j and
the decay rates are $ j%t&-$!j%t& and ' j%t&-'!j%t&. Then, the
time-local master equation in the interaction picture is in the
form of Eq. %11&, where system Hamiltonian HS has been
replaced by HLS%t&.

The spectral density of the electromagnetic field inside an
imperfect cavity is well approximated by a Lorentzian distri-
bution

JLorentz%"& =
#2

2(
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%" − !cav&2 + %)/2&2 , %36&

where #2 is a coupling constant, !cav is the resonance fre-
quency of the cavity, and ) characterizes the width of the
distribution. The essential parameter in this case is the detun-
ing * j -!cav−! j of the Bohr frequency with respect to the
cavity resonance frequency.

Since the cavity supports only modes residing close to its
resonance frequency !cav, only transitions whose Bohr fre-
quencies are close to this value contribute to the dynamics.
This justifies the description of the atom’s Hilbert space con-
sisting effectively of only two or three levels, which we now
study.

B. Units and parameters

In the examples, the time scale is set by the inverse of the
spectral distribution width )−1. The resonance frequency is
assumed to be large !cav+). The Markovian time scale is
then ,M .10)−1 (cf. convergence of the decay rates to steady

Markovian values in, e.g., Fig. 4%a&). In the Jaynes-
Cummings model, the coupling constant is set to #2=5 and
in the three-level systems it is #2=2. The dipole moment
matrix elements are always assumed to be dij =1 for all pairs
of states i! j. In the numerical simulations the time step size
is *t=0.01)−1 and the size of the ensemble is N=105. The
notation of atomic levels is the same as in Fig. 2.

C. Results

For the sake of comparison, we solve the master equation
in two different ways. First, we solve the density matrix by
using the NMQJ method. Second, we calculate the formal
analytical solutions of the equations of motion of the indi-
vidual density-matrix components %expressions are given in
Appendix B&. The results are then compared in order to
verify the functionality of our method.

1. Two-level atom: Detuned Jaynes-Cummings model

The two-level case involves only one Lindblad operator
C1=-−= "b#$a", which is the usual lowering operator from the
excited to the ground state. We choose the detuning *1=5)
and the Fig. 4%a& shows the oscillatory behavior of the cor-
responding decay rate $1%t&. The initial state is a pure state
.%0&= "/0%0&#$/0%0&", meaning that all the N ensemble mem-
bers are initially in the same state "/0%0&#. In our example
"/0%0&#= %3"a#+2"b#& //13.

For the given single jump operator and an initial state
including a finite-excited-state component, there will be only
two kinds of states contributing to the master-equation solu-
tion. This is because according to the unraveling in Eq. %2&,
the global phase factors of the single ensemble members do
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Microscopic view on non-Markovian dynamics"

What happens when the decay 
rate is temporarily Δ(t)<0 ? 
 
This is possible e.g. if cavity 
mode and atom are well off-
resonance. 
 
The direction of information flow 
is reversed: for short periods of 
time information goes from the 
environment back to the system. 
 
MCWF for Markovian system: 
since the jump probability is 
directly proportional to decay 
rate, we have negative jump 
probabilities. 

Markovian value 
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Feynman view on non-Markovian dynamics"
R. Feynman, ”Negative Probability” in ”Quantum implications: Essays in Honour of  
David Bohm”, eds. B. J. Hiley and F. D. Peat (Routledge, London, 1987) pp. 235-248 

”...conditional probabilities and probabilities of imagined 
intermediary states may be negative in a calculation of 
probabilities of physical events or states.” 
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Non-Markovian quantum jumps"

In the region of Δ(t) < 0 the system may recover the information 
it leaked to the environment earlier. 
 
A quantum jump in the  Δ(t) < 0 region reverses an earlier jump 
which occured in the Δ (t) > 0 region. 

Coherent reversal: original 
superposition is restored. 
 
But if the jump destroyed the  
original superposition, where is the 
information that we restore? 
 
And how do we calculate the 
probability for reversal? 
 
Answer: Other ensemble members 

Markovian value 
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Non-Markovian quantum jumps"

No jumps 2 jumps (channels i, j) 

N: ensemble size 
N0, Ni, Ni,j: numbers of ensemble members in respective states  

1 jump (channel i) 

! 

"(t) =
N0(t)
N

#0(t) #0(t) +
Ni(t)
N

#i(t) #i(t)
i
$ +

Ni, j (t)
N

#i, j (t) #i, j (t)
i, j
$ + ...

Here, the main quantities are 
similar as in original MCWF 
except: 
 
P’s: jump probabilities 
D’s: jump operators 

What is the physical meaning of these ? ! 

Pi"0 =
N0
Ni

#t $ %0 C
†
C %0

! 

Di"0 = #0 #i
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Non-Markovian quantum jumps"

MCWF NMQJ 

jump operators 

jump probability 

Lindblad operator 
from master equation 

Transfers the state from 1 jump state to 
no jump state: cancels an earlier quantum 
jump (jump - reverse jump cycle) 

Histories independent 
on each other 

! 

C

! 

Di"0 = #0 #i

! 

P = "t# $ C
†
C $

! 

Pi"0 =
N0
Ni

#t $ %0 D
†
D %0
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Example: Decaying two-level system"

! 

P = "t# $0 C
†
C $0

! 

Pi"0 =
N0
Ni

#t $ %0 C
†
C %0

! 

"i(#)

! 

"0(#)

g 

e 



Department of Physics and Astronomy 
University of Turku, Finland 

Example: Decaying two-level system"
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Non-Markovian quantum jumps: Summary"

•  The NMQJ method allows the unravelling of the non-Markovian time-
local master equation even for negative rates/jump probabilities. 
"

•  The method is a straightforward extension of the normal Monte Carlo 
Wave Function (MCWF) method, and becomes equivalent with it for 
positive rates. Equivalence to the master equation can be shown. 
"

•  It does not correspond to some measurement scheme such as 
detecting spontaneously emitted photons. In fact, it implies that one 
can not find such schemes for non-Markovian dynamics. 
"

•  The method is already finding its applications in various physical 
systems, including “quantum biology”. 
"

•  The method is based on ideas developed mainly by Jyrki Piilo and it is 
reported in two articles: J. Piilo at al., PRL 100, 180402 (2008); PRA 
79, 062112 (2009)."
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Alternative approach: Pseudomodes"

•  An alternative method to consider dynamics for spectral densities 
which have a pole in complex plane (such as the Lorentzian one) is 
the pseudomode approach by B.M. Garraway, PRA 55, 2290 (1997) 
"

•  We start with the state change Hamiltonian 
 
 
 
and assume a state with either zero or one excitations. 
 
"

•  It can be shown that a pole " " in spectral distribution 
appears as an extra mode for the system: "

H = !"0#+#− + !
$

!"$a$
†a$ + !

$

"!g$
!a$#+ + H.c.# , "1#

where #% are the Pauli raising and lowering operators for the
two-level system, "0 is the atomic transition frequency, a$

and a$
† are the annihilation and creation operators for the

mode $ of the field having frequency "$ and coupling con-
stant g$. We assume that initially only one excitation is
present in the system. The state of the total system at time t
takes the form

$&"t#% = c0$g,0$% + c1"t#$e,0$% + !
$

c$"t#$g,1$% , "2#

with $g ,0$%, $e ,0$%, and $g ,1$% the states containing zero ex-
citations, one atomic excitation and one excitation in the $
mode of the e.m. field, respectively.

The problem of a two-level system interacting with a
zero-temperature reservoir is in principle exactly solvable us-
ing Laplace transforms. The exact non-Markovian master
equation describing the dynamics of the atomic system takes
the form &3'

d'A

dt
=

S"t#
2i

&#+#−,'A' + ("t#(#−'A#+ −
1
2

)#+#−,'A*+ ,

"3#

where 'A is the atomic density operator. The time-dependent
Lamb shift S"t# and the time dependent decay rate ("t# are
given by

S"t# = − 2 Im, ċ1"t#
c1"t#-, ("t# = − 2 Re, ċ1"t#

c1"t#- . "4#

The master equation "3# can be simulated by means of the
non-Markovian quantum jump method &9' which extends the
Monte Carlo wave-function approach &13' to non-Markovian
systems with negative decay rates.

B. Pseudomode method

Alternatively, one can investigate the dynamics using the
pseudomode theory &8,14'. This method relies on the strong
connection between the atom dynamics and the shape of the
reservoir spectral distribution. More precisely, the key quan-
tities influencing the time evolution of the atom are the poles
of the spectral distribution in the lower half complex "$
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c1"t#-, ("t# = − 2 Re, ċ1"t#
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decay rate of the pseudomode and they depend on the posi-
tion of the pole z1."c− i) /2 while *0 is the pseudomode
coupling constant.

Both master equations "3# and "5# are exact. Hence we
expect to obtain an equation of motion for the atom of the
form of Eq. "3# by tracing out the pseudomode in Eq. "5#.
Additionally it is interesting to see the expressions of the
coefficients ("t# and S"t# as functions of the pseudomode
amplitude. Indeed the equation obtained from Eq. "5# has the
form

d'A

dt
=

A"t#
2i

&#+#−,'A' + B"t#(#−'A#+ −
1
2

)#+#−,'A*+ ,

"7#

where

A"t# = 2("0 + *0
Re)c1"t#b1

!"t#*
$c1"t#$2 + , "8#

and

FIG. 1. Diagrammatic representation of the atom-pseudomode
dynamics. "a# Atom interacting with a Lorentzian structured reser-
voir: the atom interacts with a single pseudomode which leaks into
a Markovian reservoir. "b# Atom in a “simple” photonic band gap:
we see a more complex memory architecture, the second pseudo-
mode acts as a memory for the atom, while the first pseudomode
acts as a memory for the first one.
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b1(t)

B!t" = 2!0
Im#c1!t"b1

!!t"$
%c1!t"%2

, !9"

where b1!t" is the pseudomode amplitude. By using the dif-
ferential equations governing the atom-pseudomode dynam-
ics &8'

i
d

dt
c1 = "0c1 + !0b1, i

d

dt
b1 = z1b1 + !0c1, !10"

it is easy to prove that A!t"=S!t" and B!t"=#!t".

C. Connection between pseudomode and NMQJ approaches

Once we have proven the equivalence between the two
master equations, we focus on the simple case of a Lorentz-
ian spectral distribution off resonant with the atomic transi-
tion frequency !damped Jaynes-Cummings model with de-
tuning". In the strong-coupling regime $%!0 the atomic
dynamics is strongly non-Markovian. The excited-state
population of the atom oscillates in time indicating that the
energy dissipated into the environment flows back into the
system as a consequence of the reservoir memory. At the
same time the atomic decay rate #!t" attains negative values.
The key role of the pseudomode is exposed when we look at
the time derivative of the pseudomode population and, using
the differential equations in Eq. !10", we obtain

d%b1!t"%2

dt
+ $%b1!t"%2 = #!t"%c1!t"%2. !11"

The equation above shows that the compensated rate of
change of the pseudomode population, given by the left-hand
side of Eq. !11" !where the effect of the pseudomode leakage
is removed", is directly related to the atomic decay rate. This
means that the information about the dissipative dynamics of
the atom into the structured reservoir is all contained in the
pseudomode dynamics. Equation !11" and its physical inter-
pretation is one of the main results of the paper.

We conclude this section analyzing the connection be-
tween the NMQJ unraveling of the master equation in Eq. !3"
and the Monte-Carlo wave function unraveling of the
pseudomode master equation in Eqs. !5" and !21". In the
NMQJ description the ensemble members living in the Hil-
bert space of the system are always in a pure state. In par-
ticular the density matrix of the ensemble can be written as

&A!t" =
N0!t"

N
%'0!t"()'0!t"% +

N1!t"
N

%'1()'1% , !12"

where

%'0!t"( = Cg!t"%g( + Ce!t"%e( , !13"

%'1( = %g( , !14"

N is the total number of ensemble members, N1!t" is the
number of ensemble members who have jumped into the
ground state, and N0!t" is the number of members who have
not jumped, or which have gone through a jump-reverse-
jump cycle due to the negative decay rate &9'.

In the pseudomode description the unraveling of the mas-
ter equation !5" is in the extended Hilbert space containing

the pseudomode. The density matrix of such ensemble, ex-
pressed in the atom-pseudomode basis, is the following:

&!t" =
N0

P!t"
NP %'0

P!t"()'0
P!t"% +

N1
P!t"
NP %'1

P()'1
P% , !15"

where

%'0
P!t"( = Cg0

P !t"%g,0( + Cg1
P !t"%g,1( + Ce0

P !t"%e,0( , !16"

%'1
P( = %g,0( , !17"

NP is the total number of ensemble members, N1
P!t" is the

number of ensemble members who have decayed into the
atom-pseudomode ground state via a pseudomode jump, and
N0

P!t" is the number of members who have not jumped. If we
want to look at the time evolution of the ensemble members
in the atomic Hilbert space only, we have to trace out the
pseudomode auxiliary degree of freedom. This leads to the
following reduced atomic density matrix:

&A!t" =
N0

P!t"
NP &!%Cg0

P !t"%2 + %Cg1
P !t"%2"%g()g% + %Ce0

P !t"%2%e()e%

+ Cg0
P!!t"Ce0

P !t"%e()g% + Cg0
P !t"Ce0

P!!t"%g()e%'

+
N1

P!t"
NP %g()g% !18"

in which the ensemble members are clearly in a mixed state.
A comparison between Eqs. !12" and !18" illustrates the con-
nection between the two unravelings. In particular it is illus-
trative to consider the ground-state population,

)g%&A!t"%g( =
N1!t"

N
+

N0!t"
N

%Cg!t"%2

=
N1

P!t"
NP +

N0
P!t"
NP !%Cg0

P !t"%2 + %Cg1
P !t"%2" , !19"

further showing the unravelings connection.

D. Pseudomode as effective memory

The interpretation of Eq. !11" is particularly interesting in
the light of the NMQJ method, where negative decay rates
lead to reversed quantum jumps. Consider, for example, an
atom initially prepared in a generic superposition of ground
and excited state performing a quantum jump to its ground
state at a certain time t!. If the decay rate #!t" becomes
negative at t( t!, the superpositions destroyed by the earlier
normal jump can be restored by a reversed jump. In fact a
reversed jump takes the atom to the state into which it would
have evolved if the previous quantum jump had not oc-
curred. Thus in the NMQJ framework one can characterize
the period of negativity of the decay rate as the period of
time in which memory effects and restoration of quantum
superpositions occur through reversed quantum jumps.
Stated another way, the reverse jumps describe the process
through which the system recovers part of the information
that leaked into the environment. This is confirmed by the
dynamics of the von Neumann entropy of the atom which

PSEUDOMODES AS AN EFFECTIVE DESCRIPTION OF… PHYSICAL REVIEW A 80, 012104 !2009"

012104-3

H = !"0#+#− + !
$

!"$a$
†a$ + !

$

"!g$
!a$#+ + H.c.# , "1#

where #% are the Pauli raising and lowering operators for the
two-level system, "0 is the atomic transition frequency, a$

and a$
† are the annihilation and creation operators for the

mode $ of the field having frequency "$ and coupling con-
stant g$. We assume that initially only one excitation is
present in the system. The state of the total system at time t
takes the form

$&"t#% = c0$g,0$% + c1"t#$e,0$% + !
$

c$"t#$g,1$% , "2#

with $g ,0$%, $e ,0$%, and $g ,1$% the states containing zero ex-
citations, one atomic excitation and one excitation in the $
mode of the e.m. field, respectively.

The problem of a two-level system interacting with a
zero-temperature reservoir is in principle exactly solvable us-
ing Laplace transforms. The exact non-Markovian master
equation describing the dynamics of the atomic system takes
the form &3'

d'A

dt
=

S"t#
2i

&#+#−,'A' + ("t#(#−'A#+ −
1
2

)#+#−,'A*+ ,

"3#

where 'A is the atomic density operator. The time-dependent
Lamb shift S"t# and the time dependent decay rate ("t# are
given by

S"t# = − 2 Im, ċ1"t#
c1"t#-, ("t# = − 2 Re, ċ1"t#

c1"t#- . "4#

The master equation "3# can be simulated by means of the
non-Markovian quantum jump method &9' which extends the
Monte Carlo wave-function approach &13' to non-Markovian
systems with negative decay rates.

B. Pseudomode method

Alternatively, one can investigate the dynamics using the
pseudomode theory &8,14'. This method relies on the strong
connection between the atom dynamics and the shape of the
reservoir spectral distribution. More precisely, the key quan-
tities influencing the time evolution of the atom are the poles
of the spectral distribution in the lower half complex "$

plane. By introducing some auxiliary variables, called
pseudomodes, defined in terms of the position and of the
residue of the poles of the spectral distribution, one can de-
rive a Markovian master equation in the Lindblad form for
the extended system comprising the atom and the pseudo-
modes. This exact master equation describes the coherent
interaction between the atom and the pseudomodes in pres-
ence of decay of the pseudomodes due to the interaction with
a Markovian reservoir.

For a Lorentzian spectral distribution the pseudomode ap-
proach leads to the following master equation

d'

dt
= − i&H0,'' −

)

2
&a†a' − 2a'a† + 'a†a' , "5#

where

H0 = "0#+#− + "ca
†a + *0&a†#− + a#+' "6#

and ' is the density operator for the atom and the pseudo-
mode. Since a Lorentzian function has only one pole in the
lower half complex plane, the atom interacts with one
pseudomode only as displayed in Fig. 1"a#. The constants "c
and ) are, respectively, the oscillation frequency and the
decay rate of the pseudomode and they depend on the posi-
tion of the pole z1."c− i) /2 while *0 is the pseudomode
coupling constant.

Both master equations "3# and "5# are exact. Hence we
expect to obtain an equation of motion for the atom of the
form of Eq. "3# by tracing out the pseudomode in Eq. "5#.
Additionally it is interesting to see the expressions of the
coefficients ("t# and S"t# as functions of the pseudomode
amplitude. Indeed the equation obtained from Eq. "5# has the
form

d'A

dt
=

A"t#
2i

&#+#−,'A' + B"t#(#−'A#+ −
1
2

)#+#−,'A*+ ,

"7#

where

A"t# = 2("0 + *0
Re)c1"t#b1

!"t#*
$c1"t#$2 + , "8#

and

FIG. 1. Diagrammatic representation of the atom-pseudomode
dynamics. "a# Atom interacting with a Lorentzian structured reser-
voir: the atom interacts with a single pseudomode which leaks into
a Markovian reservoir. "b# Atom in a “simple” photonic band gap:
we see a more complex memory architecture, the second pseudo-
mode acts as a memory for the atom, while the first pseudomode
acts as a memory for the first one.
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•  We are limited by the need of having one or more poles, but then the 
approach is not limited to weak couplings between the system (atom) 
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non-Markovian quantum jump method &9' which extends the
Monte Carlo wave-function approach &13' to non-Markovian
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Alternatively, one can investigate the dynamics using the
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connection between the atom dynamics and the shape of the
reservoir spectral distribution. More precisely, the key quan-
tities influencing the time evolution of the atom are the poles
of the spectral distribution in the lower half complex "$

plane. By introducing some auxiliary variables, called
pseudomodes, defined in terms of the position and of the
residue of the poles of the spectral distribution, one can de-
rive a Markovian master equation in the Lindblad form for
the extended system comprising the atom and the pseudo-
modes. This exact master equation describes the coherent
interaction between the atom and the pseudomodes in pres-
ence of decay of the pseudomodes due to the interaction with
a Markovian reservoir.

For a Lorentzian spectral distribution the pseudomode ap-
proach leads to the following master equation

d'

dt
= − i&H0,'' −

)

2
&a†a' − 2a'a† + 'a†a' , "5#

where
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and ' is the density operator for the atom and the pseudo-
mode. Since a Lorentzian function has only one pole in the
lower half complex plane, the atom interacts with one
pseudomode only as displayed in Fig. 1"a#. The constants "c
and ) are, respectively, the oscillation frequency and the
decay rate of the pseudomode and they depend on the posi-
tion of the pole z1."c− i) /2 while *0 is the pseudomode
coupling constant.

Both master equations "3# and "5# are exact. Hence we
expect to obtain an equation of motion for the atom of the
form of Eq. "3# by tracing out the pseudomode in Eq. "5#.
Additionally it is interesting to see the expressions of the
coefficients ("t# and S"t# as functions of the pseudomode
amplitude. Indeed the equation obtained from Eq. "5# has the
form
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FIG. 1. Diagrammatic representation of the atom-pseudomode
dynamics. "a# Atom interacting with a Lorentzian structured reser-
voir: the atom interacts with a single pseudomode which leaks into
a Markovian reservoir. "b# Atom in a “simple” photonic band gap:
we see a more complex memory architecture, the second pseudo-
mode acts as a memory for the atom, while the first pseudomode
acts as a memory for the first one.
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Alternative approach: Pseudomodes"

•  More poles means more pseudomodes. However, let us consider a 
special Lorentzian with a dip at the centre (photonic bandgap model): 
 
 
 
"

•  We get two pseudomodes with constant decay and 
 
 
 
 
which shows that also the pseudomodes are coupled, 
 
 
but only one of the pseudomodes is coupled to the atom."

shows an oscillatory behavior following the oscillations of
the atomic decay rate !!t". In particular the atomic von Neu-
mann entropy decreases when the decay rate is negative in-
dicating a temporary reduction in the mixedness of the
atomic state and a recovery of coherence.

Equation !11" states that if the decay rate is negative then
the compensated rate of change of the pseudomode popula-
tion is negative as well, as clearly shown by Fig. 2. So when-
ever the atom increases its excited-state population the
pseudomode must deplete. This equation, therefore, estab-
lishes a link between the restoration of coherence, typical of
a reversed jump, and the pseudomode depletion.

This observation suggests an interpretation of the pseudo-
mode as that part of the reservoir from which the atom re-
ceives back information and probability due to memory ef-
fects. In other words the pseudomode can be seen as an
effective description of the reservoir memory. This is further
shown by the dynamics of the mutual information #2,15$
between atom and pseudomode which perfectly follows the
oscillation of the pseudomode population. However the
pseudomode is not a perfect storage place since the effi-
ciency of the information restoration from the pseudomode
to the atom depends on the pseudomode loss rate ".

III. MEMORY STRUCTURE AND PSEUDOMODE
ARCHITECTURE

We now generalize our study to a more complicated spec-
tral distribution, namely, the inverted Lorentzian model de-
scribing in a simplified way photonic band gaps #14$

D!#" =
W1"1

!# − #c"2 + !"1/2"2 −
W2"2

!# − #c"2 + !"2/2"2 . !20"

The negative Lorentzian introduces a dip into the density of
states leading to the inhibition of atomic spontaneous emis-
sion in the region of the dip. In particular, for W1 /"1
=W2 /"2, the spectral distribution in Eq. !20" presents a per-
fect gap, D!#c"=0. The exact pseudomode master equation
is given by #8$

d$

dt
= − i#H0,$$ −

"1!

2
#a1

†a1$ − 2a1$a1
† + $a1

†a1$

−
"2!

2
#a2

†a2$ − 2a2$a2
† + $a2

†a2$ , !21"

where

H0 = #0%+%− + #ca1
†a1 + #ca2

†a2 + &0#a2
†%− + a2%+$

+ V!a1
†a2 + a1a2

†" , !22"

where a1 and a2 are the annihilation operators of the two
pseudomodes decaying with decay rates "1!=W1"2−W2"1
and "2!=W1"1−W2"2, respectively. The two pseudomodes
are coupled and V=%W1W2!"1−"2" /2 is the strength of the
coupling. Figure 1!b" shows the atom-pseudomodes architec-
ture in this case. The atom interacts coherently with the sec-
ond pseudomode, which is in turn coupled to the first one.
Both pseudomodes are leaking into independent Markovian
reservoirs. In the case of a perfect gap only the second
pseudomode leaks. The set of ordinary differential equations
associated to the master equation !21" is

i
d

dt
c1 = #0c1 + &0a2,

i
d

dt
a1 = z1!a1 + Va2,

i
d

dt
a2 = z2!a2 + Va1 + &0c1, !23"

where c1, a1, and a2 are the complex amplitudes for the
states with one excitation in the atom, one excitation in the
first pseudomode, and one excitation in the second pseudo-
mode, respectively. The position of the true poles is z1!=#c
− i"1! /2 and z2!=#c− i"2! /2.

Similarly to the calculations for the Lorentzian case one
can show that, after tracing out the two pseudomodes in Eq.
!21", and with the help of Eqs. !23", one obtains the non-
Markovian master equation !7" for the atom, where A!t" and
B!t" are given by the same expressions in Eq. !8" and !9"
provided that we replace b1!t" with a2!t". The non-
Markovian dynamics of the atom is linked to the coherent
variation of both pseudomodes by the following equation:

d&a1!t"&2

dt
+ "1!&a1!t"&2 +

d&a2!t"&2

dt
+ "2!&a2!t"&2 = !!t"&c1!t"&2.

!24"

This equation generalizes Eq. !11" to the more complex res-
ervoir structure considered here. Moreover, using Eqs. !23"
we obtain a relation connecting the dynamics of the first and
second pseudomodes,

d&a1!t"&2

dt
+ "1!&a1!t"&2 = 2V

Im'a2!t"a1
!!t"(

&a2!t"&2
&a2!t"&2. !25"

Having in mind that !!t"=2&0 Im'c1!t"b1
!!t"( / &c1!t"&2 one

sees that Eq. !25" has the same structure as Eq. !11". In fact

FIG. 2. The solid line is the decay rate for a two-level atom in a
Lorentzian structured reservoir. The dashed line is the compensated
rate of change of the pseudomode population d&b1!t"&2 /dt
+"&b1!t"&2. The units for the rates on the vertical and horizontal axis
are !0 and 1 /!0 with !0=4&0

2 /" Markovian decay rate of the atom.
We have taken the values "=0.6!0, &0=%0.15!0, and #c−#0=4".
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shows an oscillatory behavior following the oscillations of
the atomic decay rate !!t". In particular the atomic von Neu-
mann entropy decreases when the decay rate is negative in-
dicating a temporary reduction in the mixedness of the
atomic state and a recovery of coherence.

Equation !11" states that if the decay rate is negative then
the compensated rate of change of the pseudomode popula-
tion is negative as well, as clearly shown by Fig. 2. So when-
ever the atom increases its excited-state population the
pseudomode must deplete. This equation, therefore, estab-
lishes a link between the restoration of coherence, typical of
a reversed jump, and the pseudomode depletion.

This observation suggests an interpretation of the pseudo-
mode as that part of the reservoir from which the atom re-
ceives back information and probability due to memory ef-
fects. In other words the pseudomode can be seen as an
effective description of the reservoir memory. This is further
shown by the dynamics of the mutual information #2,15$
between atom and pseudomode which perfectly follows the
oscillation of the pseudomode population. However the
pseudomode is not a perfect storage place since the effi-
ciency of the information restoration from the pseudomode
to the atom depends on the pseudomode loss rate ".

III. MEMORY STRUCTURE AND PSEUDOMODE
ARCHITECTURE

We now generalize our study to a more complicated spec-
tral distribution, namely, the inverted Lorentzian model de-
scribing in a simplified way photonic band gaps #14$
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sion in the region of the dip. In particular, for W1 /"1
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where a1 and a2 are the annihilation operators of the two
pseudomodes decaying with decay rates "1!=W1"2−W2"1
and "2!=W1"1−W2"2, respectively. The two pseudomodes
are coupled and V=%W1W2!"1−"2" /2 is the strength of the
coupling. Figure 1!b" shows the atom-pseudomodes architec-
ture in this case. The atom interacts coherently with the sec-
ond pseudomode, which is in turn coupled to the first one.
Both pseudomodes are leaking into independent Markovian
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where c1, a1, and a2 are the complex amplitudes for the
states with one excitation in the atom, one excitation in the
first pseudomode, and one excitation in the second pseudo-
mode, respectively. The position of the true poles is z1!=#c
− i"1! /2 and z2!=#c− i"2! /2.

Similarly to the calculations for the Lorentzian case one
can show that, after tracing out the two pseudomodes in Eq.
!21", and with the help of Eqs. !23", one obtains the non-
Markovian master equation !7" for the atom, where A!t" and
B!t" are given by the same expressions in Eq. !8" and !9"
provided that we replace b1!t" with a2!t". The non-
Markovian dynamics of the atom is linked to the coherent
variation of both pseudomodes by the following equation:
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FIG. 2. The solid line is the decay rate for a two-level atom in a
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shows an oscillatory behavior following the oscillations of
the atomic decay rate !!t". In particular the atomic von Neu-
mann entropy decreases when the decay rate is negative in-
dicating a temporary reduction in the mixedness of the
atomic state and a recovery of coherence.

Equation !11" states that if the decay rate is negative then
the compensated rate of change of the pseudomode popula-
tion is negative as well, as clearly shown by Fig. 2. So when-
ever the atom increases its excited-state population the
pseudomode must deplete. This equation, therefore, estab-
lishes a link between the restoration of coherence, typical of
a reversed jump, and the pseudomode depletion.

This observation suggests an interpretation of the pseudo-
mode as that part of the reservoir from which the atom re-
ceives back information and probability due to memory ef-
fects. In other words the pseudomode can be seen as an
effective description of the reservoir memory. This is further
shown by the dynamics of the mutual information #2,15$
between atom and pseudomode which perfectly follows the
oscillation of the pseudomode population. However the
pseudomode is not a perfect storage place since the effi-
ciency of the information restoration from the pseudomode
to the atom depends on the pseudomode loss rate ".

III. MEMORY STRUCTURE AND PSEUDOMODE
ARCHITECTURE

We now generalize our study to a more complicated spec-
tral distribution, namely, the inverted Lorentzian model de-
scribing in a simplified way photonic band gaps #14$

D!#" =
W1"1

!# − #c"2 + !"1/2"2 −
W2"2

!# − #c"2 + !"2/2"2 . !20"

The negative Lorentzian introduces a dip into the density of
states leading to the inhibition of atomic spontaneous emis-
sion in the region of the dip. In particular, for W1 /"1
=W2 /"2, the spectral distribution in Eq. !20" presents a per-
fect gap, D!#c"=0. The exact pseudomode master equation
is given by #8$

d$

dt
= − i#H0,$$ −

"1!

2
#a1

†a1$ − 2a1$a1
† + $a1

†a1$

−
"2!

2
#a2

†a2$ − 2a2$a2
† + $a2

†a2$ , !21"

where

H0 = #0%+%− + #ca1
†a1 + #ca2

†a2 + &0#a2
†%− + a2%+$

+ V!a1
†a2 + a1a2

†" , !22"

where a1 and a2 are the annihilation operators of the two
pseudomodes decaying with decay rates "1!=W1"2−W2"1
and "2!=W1"1−W2"2, respectively. The two pseudomodes
are coupled and V=%W1W2!"1−"2" /2 is the strength of the
coupling. Figure 1!b" shows the atom-pseudomodes architec-
ture in this case. The atom interacts coherently with the sec-
ond pseudomode, which is in turn coupled to the first one.
Both pseudomodes are leaking into independent Markovian
reservoirs. In the case of a perfect gap only the second
pseudomode leaks. The set of ordinary differential equations
associated to the master equation !21" is

i
d

dt
c1 = #0c1 + &0a2,

i
d

dt
a1 = z1!a1 + Va2,

i
d

dt
a2 = z2!a2 + Va1 + &0c1, !23"

where c1, a1, and a2 are the complex amplitudes for the
states with one excitation in the atom, one excitation in the
first pseudomode, and one excitation in the second pseudo-
mode, respectively. The position of the true poles is z1!=#c
− i"1! /2 and z2!=#c− i"2! /2.

Similarly to the calculations for the Lorentzian case one
can show that, after tracing out the two pseudomodes in Eq.
!21", and with the help of Eqs. !23", one obtains the non-
Markovian master equation !7" for the atom, where A!t" and
B!t" are given by the same expressions in Eq. !8" and !9"
provided that we replace b1!t" with a2!t". The non-
Markovian dynamics of the atom is linked to the coherent
variation of both pseudomodes by the following equation:

d&a1!t"&2

dt
+ "1!&a1!t"&2 +

d&a2!t"&2

dt
+ "2!&a2!t"&2 = !!t"&c1!t"&2.

!24"

This equation generalizes Eq. !11" to the more complex res-
ervoir structure considered here. Moreover, using Eqs. !23"
we obtain a relation connecting the dynamics of the first and
second pseudomodes,

d&a1!t"&2

dt
+ "1!&a1!t"&2 = 2V

Im'a2!t"a1
!!t"(

&a2!t"&2
&a2!t"&2. !25"

Having in mind that !!t"=2&0 Im'c1!t"b1
!!t"( / &c1!t"&2 one

sees that Eq. !25" has the same structure as Eq. !11". In fact

FIG. 2. The solid line is the decay rate for a two-level atom in a
Lorentzian structured reservoir. The dashed line is the compensated
rate of change of the pseudomode population d&b1!t"&2 /dt
+"&b1!t"&2. The units for the rates on the vertical and horizontal axis
are !0 and 1 /!0 with !0=4&0

2 /" Markovian decay rate of the atom.
We have taken the values "=0.6!0, &0=%0.15!0, and #c−#0=4".
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H = !"0#+#− + !
$

!"$a$
†a$ + !

$

"!g$
!a$#+ + H.c.# , "1#

where #% are the Pauli raising and lowering operators for the
two-level system, "0 is the atomic transition frequency, a$

and a$
† are the annihilation and creation operators for the

mode $ of the field having frequency "$ and coupling con-
stant g$. We assume that initially only one excitation is
present in the system. The state of the total system at time t
takes the form

$&"t#% = c0$g,0$% + c1"t#$e,0$% + !
$

c$"t#$g,1$% , "2#

with $g ,0$%, $e ,0$%, and $g ,1$% the states containing zero ex-
citations, one atomic excitation and one excitation in the $
mode of the e.m. field, respectively.

The problem of a two-level system interacting with a
zero-temperature reservoir is in principle exactly solvable us-
ing Laplace transforms. The exact non-Markovian master
equation describing the dynamics of the atomic system takes
the form &3'

d'A

dt
=

S"t#
2i

&#+#−,'A' + ("t#(#−'A#+ −
1
2

)#+#−,'A*+ ,

"3#

where 'A is the atomic density operator. The time-dependent
Lamb shift S"t# and the time dependent decay rate ("t# are
given by

S"t# = − 2 Im, ċ1"t#
c1"t#-, ("t# = − 2 Re, ċ1"t#

c1"t#- . "4#

The master equation "3# can be simulated by means of the
non-Markovian quantum jump method &9' which extends the
Monte Carlo wave-function approach &13' to non-Markovian
systems with negative decay rates.

B. Pseudomode method

Alternatively, one can investigate the dynamics using the
pseudomode theory &8,14'. This method relies on the strong
connection between the atom dynamics and the shape of the
reservoir spectral distribution. More precisely, the key quan-
tities influencing the time evolution of the atom are the poles
of the spectral distribution in the lower half complex "$

plane. By introducing some auxiliary variables, called
pseudomodes, defined in terms of the position and of the
residue of the poles of the spectral distribution, one can de-
rive a Markovian master equation in the Lindblad form for
the extended system comprising the atom and the pseudo-
modes. This exact master equation describes the coherent
interaction between the atom and the pseudomodes in pres-
ence of decay of the pseudomodes due to the interaction with
a Markovian reservoir.

For a Lorentzian spectral distribution the pseudomode ap-
proach leads to the following master equation

d'

dt
= − i&H0,'' −

)

2
&a†a' − 2a'a† + 'a†a' , "5#

where

H0 = "0#+#− + "ca
†a + *0&a†#− + a#+' "6#

and ' is the density operator for the atom and the pseudo-
mode. Since a Lorentzian function has only one pole in the
lower half complex plane, the atom interacts with one
pseudomode only as displayed in Fig. 1"a#. The constants "c
and ) are, respectively, the oscillation frequency and the
decay rate of the pseudomode and they depend on the posi-
tion of the pole z1."c− i) /2 while *0 is the pseudomode
coupling constant.

Both master equations "3# and "5# are exact. Hence we
expect to obtain an equation of motion for the atom of the
form of Eq. "3# by tracing out the pseudomode in Eq. "5#.
Additionally it is interesting to see the expressions of the
coefficients ("t# and S"t# as functions of the pseudomode
amplitude. Indeed the equation obtained from Eq. "5# has the
form

d'A

dt
=

A"t#
2i

&#+#−,'A' + B"t#(#−'A#+ −
1
2

)#+#−,'A*+ ,

"7#

where

A"t# = 2("0 + *0
Re)c1"t#b1

!"t#*
$c1"t#$2 + , "8#

and

FIG. 1. Diagrammatic representation of the atom-pseudomode
dynamics. "a# Atom interacting with a Lorentzian structured reser-
voir: the atom interacts with a single pseudomode which leaks into
a Markovian reservoir. "b# Atom in a “simple” photonic band gap:
we see a more complex memory architecture, the second pseudo-
mode acts as a memory for the atom, while the first pseudomode
acts as a memory for the first one.
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•  One can actually show that the pseudomode approach and the time-
local master equation with time-dependent rates are equivalent. 
 
It turns out that the pseudomode rate of change relates to the time-
dependent rates in the time-local non-Markovian master equation: 
 
 
 
With this, the pseudomode approach becomes also equivalent to the 
NMQJ method. 
"

•  For more details, see L. Mazzola et al., PRA 80, 012104 (2009)  
"

•  We can turn this around as well: if a system is coupled to some mode 
or modes, which then decay in a Markovian way, we have a non-
Markovian system."

B!t" = 2!0
Im#c1!t"b1

!!t"$
%c1!t"%2

, !9"

where b1!t" is the pseudomode amplitude. By using the dif-
ferential equations governing the atom-pseudomode dynam-
ics &8'

i
d

dt
c1 = "0c1 + !0b1, i

d

dt
b1 = z1b1 + !0c1, !10"

it is easy to prove that A!t"=S!t" and B!t"=#!t".

C. Connection between pseudomode and NMQJ approaches

Once we have proven the equivalence between the two
master equations, we focus on the simple case of a Lorentz-
ian spectral distribution off resonant with the atomic transi-
tion frequency !damped Jaynes-Cummings model with de-
tuning". In the strong-coupling regime $%!0 the atomic
dynamics is strongly non-Markovian. The excited-state
population of the atom oscillates in time indicating that the
energy dissipated into the environment flows back into the
system as a consequence of the reservoir memory. At the
same time the atomic decay rate #!t" attains negative values.
The key role of the pseudomode is exposed when we look at
the time derivative of the pseudomode population and, using
the differential equations in Eq. !10", we obtain

d%b1!t"%2

dt
+ $%b1!t"%2 = #!t"%c1!t"%2. !11"

The equation above shows that the compensated rate of
change of the pseudomode population, given by the left-hand
side of Eq. !11" !where the effect of the pseudomode leakage
is removed", is directly related to the atomic decay rate. This
means that the information about the dissipative dynamics of
the atom into the structured reservoir is all contained in the
pseudomode dynamics. Equation !11" and its physical inter-
pretation is one of the main results of the paper.

We conclude this section analyzing the connection be-
tween the NMQJ unraveling of the master equation in Eq. !3"
and the Monte-Carlo wave function unraveling of the
pseudomode master equation in Eqs. !5" and !21". In the
NMQJ description the ensemble members living in the Hil-
bert space of the system are always in a pure state. In par-
ticular the density matrix of the ensemble can be written as

&A!t" =
N0!t"

N
%'0!t"()'0!t"% +

N1!t"
N

%'1()'1% , !12"

where

%'0!t"( = Cg!t"%g( + Ce!t"%e( , !13"

%'1( = %g( , !14"

N is the total number of ensemble members, N1!t" is the
number of ensemble members who have jumped into the
ground state, and N0!t" is the number of members who have
not jumped, or which have gone through a jump-reverse-
jump cycle due to the negative decay rate &9'.

In the pseudomode description the unraveling of the mas-
ter equation !5" is in the extended Hilbert space containing

the pseudomode. The density matrix of such ensemble, ex-
pressed in the atom-pseudomode basis, is the following:

&!t" =
N0

P!t"
NP %'0

P!t"()'0
P!t"% +

N1
P!t"
NP %'1

P()'1
P% , !15"

where

%'0
P!t"( = Cg0

P !t"%g,0( + Cg1
P !t"%g,1( + Ce0

P !t"%e,0( , !16"

%'1
P( = %g,0( , !17"

NP is the total number of ensemble members, N1
P!t" is the

number of ensemble members who have decayed into the
atom-pseudomode ground state via a pseudomode jump, and
N0

P!t" is the number of members who have not jumped. If we
want to look at the time evolution of the ensemble members
in the atomic Hilbert space only, we have to trace out the
pseudomode auxiliary degree of freedom. This leads to the
following reduced atomic density matrix:

&A!t" =
N0

P!t"
NP &!%Cg0

P !t"%2 + %Cg1
P !t"%2"%g()g% + %Ce0

P !t"%2%e()e%

+ Cg0
P!!t"Ce0

P !t"%e()g% + Cg0
P !t"Ce0

P!!t"%g()e%'

+
N1

P!t"
NP %g()g% !18"

in which the ensemble members are clearly in a mixed state.
A comparison between Eqs. !12" and !18" illustrates the con-
nection between the two unravelings. In particular it is illus-
trative to consider the ground-state population,

)g%&A!t"%g( =
N1!t"

N
+

N0!t"
N

%Cg!t"%2

=
N1

P!t"
NP +

N0
P!t"
NP !%Cg0

P !t"%2 + %Cg1
P !t"%2" , !19"

further showing the unravelings connection.

D. Pseudomode as effective memory

The interpretation of Eq. !11" is particularly interesting in
the light of the NMQJ method, where negative decay rates
lead to reversed quantum jumps. Consider, for example, an
atom initially prepared in a generic superposition of ground
and excited state performing a quantum jump to its ground
state at a certain time t!. If the decay rate #!t" becomes
negative at t( t!, the superpositions destroyed by the earlier
normal jump can be restored by a reversed jump. In fact a
reversed jump takes the atom to the state into which it would
have evolved if the previous quantum jump had not oc-
curred. Thus in the NMQJ framework one can characterize
the period of negativity of the decay rate as the period of
time in which memory effects and restoration of quantum
superpositions occur through reversed quantum jumps.
Stated another way, the reverse jumps describe the process
through which the system recovers part of the information
that leaked into the environment. This is confirmed by the
dynamics of the von Neumann entropy of the atom which
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Summary"

•  In these lectures I have dwelled into the concepts and dynamics of 
open quantum systems & decoherence from various directions. 
"

•  Non-Markovian dynamics has recently become a popular topic in 
research due to the existence of spectrally non-trivial environments, or 
due to the possibility to engineer them (reservoir engineering)."

•  The drive to construct quantum computers using various e.g. solid 
state systems challenges some of the traditional quantum optics 
viewpoints. For instance, one can not assume that the secular 
approximation is valid in such systems. 
"

•  In quantum information (and other fields as well) decoherence is 
usually considered as a problem. Sometimes, as in energy transport, 
its presence may actually be necessary, in order to avoid localisation 
effects (see e.g. recent work by Plenio, Huelga & coworkers)."


