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Relaxation of a harmonic oscillator

« We have derived the Lindblad master equation for a two-level system:

. dps
htS _1H!
{/ dt [ S?IOS]
1h _ _ —
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« Alternatively, one can consider the relaxation of a quantised harmonic
oscillator. This is sometimes called the Quantum Brownian Motion
problem. Instead of starting from the microscopic derivation (which
follows similar lines as the two-level atom derivation), let us just state
the final result and then some aspects related to it.
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Relaxation of a harmonic oscillator

 If the oscillator is described by operators a, a' then we have

Hq = hwa'a

and if the interaction with the reservoir causes a lowering or raising the
oscillator state by one quantum, then we get eventually

d :

d_tp = —w [aTa,p}
—g (aTap — 2apat + paTa)
—g (aan — 2a'pa + paaT) :

which is similar to the two-level atom (both lowering and raising
appear as their own Lindblad terms).
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Relaxation of a harmonic oscillator

« As a next step we can look at the dynamics of the expectation value

Cla) = T (%p)

= —w'r ([a,aTa} ,0)

—% Tr ([a,a*a} ,0) — gTI‘ ([GCLT,UJ} P)

- (w5

where one has used the relation

Tr(A[B, C]) = Tr([|A, B]C)
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Relaxation of a harmonic oscillator

* The solution to the equation is simple:

(a(t)) = exp [_ (w + @) t] (a(0)).

« This shows that, as long as C>A, the amplitude is damped in the way
expected from a classical solution. This behavior relates to the
expectation value only. The operator cannot be damped as this would
violate the commutation rules. The correct behavior of the operator is
restored by the quantum fluctuations of the environment effecting the
damping.

» If C<A, the equations describe a quantum amplifier. This description
is, however, incomplete, because the exponential growth can continue
for a limited period only. After that nonlinear saturation effects must set
in and limit the growth.
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Relaxation of a harmonic oscillator

» Let us next consider the expectation value of a proper observable:

d d
o (a'a) Tr (a adtp)

= A({a'a) +1) — C{a'a).
which is the same as

d

—n=—(C—-A)n+ A.

« For C>Athis agrees with the damping of the amplitude but the
inhomogeneous term displays the effects of the fluctuations deriving

from the environment providing the damping. In steady state, we have

_ A
n=——-—

C—-A
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Relaxation of a harmonic oscillator

* From
A

C—-A

we see that for a reservoir providing no amplification, A=0, the
oscillator relaxes to its ground state. With a thermal reservaoir,

however, we expect the steady state to be of thermal character
1

exp (%) —1
« This implies the detailed balance condition % = exp ( fiwo )

kT
A = F’I?,B,
C :F( TLB—|—1),

n =

n=ng=

and thus

with T'= lim C
T—0
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Two-level system revisited

* For the two-level system with Bloch vector description we have earlier
given the equation
d — —> —> 1 N 1 A ~
%R = B X R-— ﬁ(RZ — Rz,())ez — E (Rxex + Ryey)
« One the other hand, we have derived for longitudinal noise (change of
state) the microscopic master equation. The transverse noise can be

added easily and thus we get

ip = —if[azyp]—l(p—azpaz)

dt 2 2
¢ - — ot + g
—5(0 ocTp—20"poT +poTo)
A

—5(0_0+p — 20t po~ + po~ o).
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Two-level system revisited

« So now in the equation

d - 1 ) 1 . .
ER — B X R— T_l(RZ Rz,O)ez _ E (RCUeCU + Ryey)
we have ]
p— |
T, TG
i_ A+C
T, T T2
A-C
R.o= :
YT ArC

where A and C depend on the temperature of the environment
(Remember: C is for damping, A for gain). For T = 0 we have only

damping and I, o = —1, otherwise hw
R, o= —tanh
0= T (QkBT)
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Two-level system revisited

The master equation is actually a very robust way to describe
dynamics. We can e.g. add to the system Hamiltonian terms that
couple the original states.

Another situation occurs frequently in laser spectroscopy. We often
use some truncated set of energy eigenstates, but can still have decay
out of the system. This is described by adding simply to the relevant
energy states decay terms that reduces the population, i.e., we give
their energy some imaginary contribution. In atomic collision physics
these are called optical potentials as they may depend on position.

We can also add simply a constant to the right-hand side of the master
equation. In laser spectroscopy this stands for pumping the truncated
state. Together with the decay terms they usually lead to a steady
state for the system.
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Decoherence in quantum registers

» Let us consider again the case of pure decoherence for a quantum bit.
Qubits can form a register and we can ask the crucial question: how
does the decay of coherences scale with the number of qubits?

« We start with a system of two qubits. Now we need to assign them
positions as well

H = %O'wo—|—1 b b+ZbTbkwk
+ D (Og(gﬁ kT gﬁ*bk) + o (ghbl + b bk))
k

* In the interaction picture we get

U(t) = exp{ EbT [ )+ olEp(t )} — by {O‘Z () + o ﬁ*(t)}}
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Decoherence in quantum registers

» Let us for simplicity assume that T = 0. In addition, we select two
different initial states

|(I)(_)> = (c10/1a,0p) + 01|04, 1p)) ® [Ox)
DY = (col04, 0p) + 11|14, 1)) @ |04

 The time evolution of these states in then

D(1)) = crolla, 0n)] + (& — &) + corl0a, 1) [5 (& — &),
D (1)) = cool0a, 0n)] — 5(&k + &) + el 1) |5 (&R + &))-
« This shows an interesting result: as the two qubits approach each

other, the decoherence is removed for the first state and enhanced by
factor of 2 for part of the second state.

» This leads to the idea of using a subspace of a two-qubit system as a
qubit. It is an example of Decoherence-Free Subspaces (DFS).
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Decoherence in quantum registers

» Let us continue with some general reduced density matrix for the two-
qubit system:

Piajasivis(t) = (iay | TTR{O(E) }Jas Jb)
« Using again the displacement operators one can show that

Pratuivin(t) = Piajuins(0) [T Tric { Rar D{(ia — ja) & D10 — )&k }
» The interesting case is that ifz, #kja, W 7 J», We see collective decay

pro10(t) = pr010(0) [ T {RkTD(fﬁ + 512)}
k

= €_F+(t),010,10(0>>
pro01(t) = proo(0) [T {RkTD(ﬁﬁ - 512)}
K
= e Wpig01(0). gr = gre™ ™ and gy = gee’™™
1— t
(R, t) /dk\gk\2 coth (;U;) 6028 “h [1+cos(k - R)] R=r,—r
Wi
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Decoherence in quantum registers

« We can define a transit time between the qubits as 7, (

s (wts =k-R)
Then the two decay rates for finite temperature, normalised to cutoff
frequency, 11 = w./T , look like

1.0 1.0 1.0
0.8 1) 08 0.8
06 €7D 0.6 06 e 1 ®
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Decoherence in quantum registers

« The two-qubit situation can be extended into the general L-qubit case.
For

p{ln,jn}(t) — <il—17 Z.L—2"‘7 i0|TTR{Q(t)}‘jL—17 jL—27 sy ]0>
it turns out that in the limiting case of all qubits at the same position we
get

P{1,,0n} = P{ln,on}(o)e_LQF(t)

whereas for qubits having independent environments the decay rate
scales linearly with L.

« Thus the case of having the same environment for all qubits is a
double-edged sword: a) in general the decoherence rates scale badly,
but b) one can have also very slowly decohering state combinations.
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Decoherence in quantum computing: example

* Let us just briefly consider a
basic quantum computing
operation such as the Discrete
Fourier Transformation.
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Network for DFT
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Noise in DFT

We introcude after each
computational step a
phase kick that has a
random strength given
by a Gaussian
distribution with a width
delta.

This introduces noise
that affects the quality
factor Q. How does this
noise scale for a fixed
delta as a function of
the qubit number L?

A. Barenco et al., Phys.
Rev. A 54, 139 (1996).
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Noise in DFT
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Noise in approximate DFT

Quality of the transform
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Unravelling of the master equation

* As mentioned before, the system dynamics may become difficult to
calculate even if the master equation is known, since if the state space
dimension is D, the density matrix has D?-1 a priori independent
elements.

+ Example: for a wave packet |¥(z,t)) — p(z,2’,t) so that the
density matrix now contains correlations between positions.

« Such situations arise e.g. in laser cooling of atoms, or laser-assisted
ultracold collisions between atoms.

* On the other hand, if we consider the density matrix as representing
an ensemble of single quantum systems, we can ask if the time
evolution can be regarded as an ensemble of single system histories
(or trajectories).

» There is a physical justification to this view: Quantum jumps
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Quantum jumps

Old quantum mechanics & Niels Bohr (1910’s):

— change of a quantum state by an instantaneous jump
(e.g. photon absorption and emission).

Ensemble dynamics & Schrodinger (1920’s):
— Superpositions and probability interpretation.

— Deterministic evolution of probability amplitudes.

— Measurable with an infinite number of identical systems
(ensemble).
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Bohr vs. Schrodinger

Schrodinger:

“If all this damned quantum jumping were really to
stay, | should be sorry | ever got involved with quantum
theory.”

Bohr:

“But we others are very grateful to you that you did,
since your work did so much to promote the theory.”

R.J. Cook: Quantum jumps, Prog. in Optics XXVIII, Elsevier, 1990
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Bohr vs. Schrodinger

"We never experiment with just one electron
or atom or (small) molecule. In thought
experiments, we sometimes assume that we do;
this invariably entails ridiculous consequences.
In the first place it is fair to state that we are
not experimenting with single particles any
more than we can raise ichthyosauria in the
700."

Erwin Schrodinger in 1952

Superpositions and interference.

Probability amplitudes with deterministic dynamics.

Realised in ensembles.

Single system dynamics is not a meaningful concept (random future).

Single systems themselves are not meaningful?
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Trapped ion

A photograph of a single ion in
an electromagnetic trap

(Dehmelt & Toschek, Hamburg
1980)

The ion is excited by laser light
from the electronic ground state
to an excited state.

Excited ion returns to ground
state by emitting a photon
spontaneously.

We "see” the ion!
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Detection scheme

Fluorescent state Mercury ion Hg

Metastable state

W.M. Itano, J.C. Bergquist, and D.J. Wineland, Science 37, 612 (1987)
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Trapping to the metastable states

W.M. Itano, J.C. Bergquist, and D.J. Wineland, Science 37, 612 (1987)
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Ensemble behaviour: exponential decay

VOLUME 56, NUMBER 26 PHYSICAL REVIEW LETTERS 30 JUNE 1986

Shelved Optical Electron Amplifier: Observation of Quantum Jumps

Warren Nagourney, Jon Sandberg, and Hans Dehmelt

Department of Physics, University of Washington, Seattle, Washington 98195
(Received S May 1986)
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FIG. 2. A typical trace of the 493-nm fluorescence from FIG. 3. Histogram of distribution of dwell times in the
the 62Py, level showing the quantum jumps after the hollow shelf level for 203 “‘off”” times. A fitted theoretical (ex-
cathode lamp is turned on. The atom is definitely known to ponential) distribution for a metastable lifetime of 30 sec is

be in the shelf level during the low fluorescence periods. superposed on the experimental histogram.
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Jumping photons

Quantum jumps of light recording the birth and death
of a photon in a cavity  nature 446, 297 (2007) - March 15

Sébastien Gleyzes', Stefan Kuhr't, Christine Guerlin', Julien Bernu', Samuel Deléglise’, Ulrich Busk Hoff’,
Michel Brune', Jean-Michel Raimond® & Serge Haroche'
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Rydberg states and microwave cavities

Rydberg state atoms are used to
manipulate and detect the photon
states in the cavity.

Only one cavity mode is near-
resonant with the "e-g”
transition.

If the cavity is initially empty, i.e.,
photon number n = 0, an atom
comes out in state g.

If there is a photon, the atom
comes out in state e.

— and the photon survives! QND
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Cavity thermodynamics

But the cavity is at a finite P .
temperature T= 0.8 K. -

L
Thermal occupation of cavity 01,04
(2
modes. ;

Excitation from g to e is
possible.

For resonant mode <n> << 1.
Only integral photon numbers

can be observed for single
atoms.
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Photon state change by jumps

Repeat: Only integral photon
numbers can be observed for
single atoms.

So, to obtain <n> << 1 on
average, we need to have 1
photon in the cavity for a finite
and short time.

This is seen in experimental
data



Ensemble average

Figure 3 | Decay of the one-photon state. a, Measured value of P, = |1) (1
as a function of time, in a single experimental realization; b—d, averages of 5,
15 and 904 similar quantum trajectories, showing the gradual transition
from quantum randomness into a smooth ensemble average. Dotted red line
in ¢ and d, theoretical evolution of the probability of having one photon,
(Py(1)), obtained by solving the field master equation with the experimental
values of T, and n,.

Key point:

We recover the ensemble result in the
limit of (infinitely) many realisations
as an average.

Recent work: prepare n>1, observe
the integer step decay into n=0

* Guerlin et al., Nature 448, 889 (23
August 2007).
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Summary

We see that
a) One can observe single system dynamics
b) Quantum jumps are an integral part of them

c) They are caused by the interaction of a small-scale
system with an inifinite environment

d) An average of many such different and seemingly
random “telegraphic” signals (histories or trajectories)
produces the ensemble average
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Simulation by jumps

We can turn the idea around:
a) We have a system that we want to study
b) The ensemble solution is difficult to calculate

c) Invent a fictitious quantum jump scheme to generate
single system histories and build the directly
unaccessible ensemble from them and possibly obtain
some insight as well

d) The basis for the jump scheme is obtained from the
master equation in Lindblad form

dp(t) _l i _1 ( i i
—dt = lh [HS’p]+ ;rmcmpcm Z;Fm Cmcmp+ pcmcm
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Master equation and jump processes

A possible interpretation for the Master equation (Lindblad form)

dp(t) _ i F l T T

The positive constants I',, are related to the probabilities
to perform a quantum jump given by the operator C, .

Note that the choice of the system basis or the set of
operators C is not unique. It can correspond to a viable
detection scheme but does not have to.

In quantum information one can actually consider
measurements and interaction with a reservoir as the two
sides of the same coin.
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Monte Carlo Wave Function Method

Thus we can unravel the ensemble dynamics given by

dp(t) 1 r 1 ( t f

into a set of single system histories i.e. deterministic time evolution
perturbed by random quantum jumps.

p(t) =3 P.(0)|W;(0))(W; (1))
i
This leads to a very efficient simulation method.

Monte Carlo Wave Function (MCWF) method,

Dalibard, Castin & Malmer, PRL 68, 580 (1992);
Mgalmer, Castin & Dalibard, JOSA B 10, 527 (1993).
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Monte Carlo Wave Function Method

Example: A driven two-state atom + electromagnetic modes

single history ensemble average

Dalibard, Castin & Malmer, PRL 68, 580 (1992).
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To generate an ensemble member

. : L d
Solve the Schrédinger equation. lha‘qj(t» — H‘ q!(t)>

Use a non-Hermitian Hamiltonian H
which includes a decay part H,..

H=H,+H,,
Jump operators C,, can be found from
the dissipative part of the Master

. ] T
equation. H,, = —%Efmcmcm
m

Effect of the non-Hermitian Hamiltonian:

For each time step, the shrinking of the

norm gives the jump probability P. P=73dp,
m

For each channel m the jump probability
is given by the time step size, decay
rate, and decaying state occupation
probability.

;
op,, = oL, (W|C,,C,.| W)



Two-state atom example

Jump operator

C=Tg)(e]

Non-Hermitian Hamiltonian

Jump probability (and change of norm)

P=0p= 6tr‘ce‘2

Department of Physics and Astronomy
University of Turku, Finland
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The algorithm

1. time-evolution over 6

2. generate random number, did quantum jump occur ?

op<e op>¢
no yes

3. renormalize W before new time step

3. apply jump operator C; before new time step

4. At the end of time-evolution, take ensemble average
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Equivalence with the ensemble dynamics

The state of the ensemble averaged over time step
(for simplicity here: initial pure state and one decay channel only):

This giyes comm. + anticomm. of m.e. This gives "sandwich” term of the m.e.

A

@t +01))(p(t + O1)| P ClP())(P(@)|C '
« 1=P “wec v

L4
t-evol. and normalization

p(t+ot)=>1-P)

<

Average’

"No-jump” path weight " Jump” pat’h weight Jump and normalization

Keeping in mind two things:
a) the time-evolved state is b) the jump probability is

: i
p(r+ 1)) = (1— ZH;SZ - rz& CTc)‘ W(r)) P=&I(¥|C C|¥)
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Unravelling of master equation: Summary

We can treat the open system dynamics as an ensemble of single
wave vector histories, where the deterministic evolution (driven by a
non-Hermitean Hamiltonian, though) is now perturbed by random
jumps: Piecewise Deterministic Process.

The method is very powerful and in some cases can be given a real
measurement interpretation.

There are other approaches as well, based on either jumps or
incremental noise terms (Quantum State Diffusion method).
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Non-Markovian open quantum systems

* Non-Markovianity implies that there are memory effects.

* Basic treatment is the Nakajima-Zwanzig projection method, which
produces an integral involving the density matrix and a memory
kernel. Problem: usually not easy to solve, and even harder to
simulate.

« The spectral structure may be unusual, concentration around one or
more energies (e.g. Lossy cavity mode, photonic bandgap materials).

« There is a finite duration for any energy or information to spread inside
the reservoir, and thus there is a possibility that some of it may come
back to the system: memory effect .

« This leads to non-Markovian dynamics. For some cases it can be
handled with the time-convolutionless method (TCL).
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Microscopic view on nhon-Markovian dynamics

Consider the Redfield equation again

dps(t) _ 1 [
di 2

dt' Trg ([Hse(t), [Hse(t'), ps(t) ® pel])

It was obtained by assuming initially uncorrelated system and
environment, an unchanging environment (Born) and replacing

ps(t') — ps(t)
» The last action formed a part of the Markov approximation. But we do

not have the take the integration limit to infinity. Without going into
details we see that we will get decay rates that depend on time.

« The key issue is that the more advanced methods (TCL) show that
this “partially Markovian” approach gives a consistent master equation
up to the second order.
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Microscopic view on nhon-Markovian dynamics

« Thus the non-Markovian are given by the time-local master equation
dp(t 1 o1 T T
p( ) = ._[HS ,P] + EAm(t)CmpCm - _EAm (t)(cmcmp + pCmCm)
dt ih " 2.

Non-Markovian effects lead to time-dependent decay rates A (t).

A>0: Lindblad-type |
A<0: non-Lindblad-type Markovian value

Decay can have temporarily

negative values but integral .
of decay over time has to be

always positive (to obtain CP).

And quantum jumps?
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Microscopic view on nhon-Markovian dynamics

« Thus the non-Markovian dynamics is given by the master equation

dp(t) 1 ] T T
dp(t) _ —[Hg.p]+ 3 A, (t)C0C,y =~ EAm(t)(CmCmP + pCmCm)
dt ih m 2 m

with
A (1) = ZJ dSJ dvJ(v)cos[(v— w)s].
0 0

« Examples of physical systems are e.g. and atom coupled with a single
but leaky cavity mode:

o’ I
27 (v — wgy)* + (I'72)%°

J Lorentz( V) —
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Microscopic view on nhon-Markovian dynamics

What happens when the decay
rate is temporarily A(t)<0 ?

This is possible e.q. if cavity
mode and atom are well off-
resonance.

The direction of information flow
is reversed: for short periods of
time information goes from the

environment back to the system.

MCWEF for Markovian system:
since the jump probability is
directly proportional to decay
rate, we have negative jump
probabilities.

Markovian value
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Feynman view on non-Markovian dynamics

R. Feynman, "Negative Probability” in "Quantum implications: Essays in Honour of
David Bohm”, eds. B. J. Hiley and F. D. Peat (Routledge, London, 1987) pp. 235-248

One of the assumptions was that the probability for an event must
always be a positive number. Trying to think of negative probabilities
gave me a cultural shock at first, but when 1 finally got easy with the
concept I wrote myself a note so I wouldn’t forget my thoughts. I

”...conditional probabilities and probabilities of imagined
intermediary states may be negative in a calculation of
probabilities of physical events or states.”



Department of Physics and Astronomy
University of Turku, Finland

Non-Markovian quantum jumps

In the region of A(t) < 0 the system may recover the information
it leaked to the environment earlier.

A quantum jump in the A(t) < 0 region reverses an earlier jump
which occured in the A (t) > 0 region.

Coherent reversal: original

Markovian value superposition is restored.

But if the jump destroyed the
original superposition, where is the
information that we restore?

And how do we calculate the
probability for reversal?

Answer: Other ensemble members
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Non-Markovian quantum jumps

. N .(t
o(t) = N?\ft)\lpo(z)><lpo(t)\+EN;\?)\‘PZ-(t)X‘P,-(t)M2 ’]’G( )\‘Pi,j(t)><‘ll,-,j(t)\+...
i 1,]

No jumps ) 2 jumps (channels i, j)

1 jump (channel i

N: ensemble size
No, N;, N;;: numbers of ensemble members in respective states

Here, the main quantities are

il P = (TN € €Iy}
P’ s: jump probabilities D,y = ‘lp0><\pl‘

D’ s: jump operators

What is the physical meaning of these ?
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Non-Markovian quantum jumps

MCWF NMQJ
C jump operators  D;_,o = “I’O><Wl‘
Lindblad operator Transfers the state from 1 jump state to
from master equation no jump state: cancels an earlier quantum

jump (jump - reverse jump cycle)

jump probability
_No
N.

l

P =AW [c ' clw ) Pr_o = 0 1AW, D D)

Histories independent
on each other
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Example: Decaying two-level system

(1)

L

-

. -;- N
P - oWy C Wy Prosg = N2 S1A(Wo C € Wo)
Wi(D)

l
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Example: Decaying two-level system
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Non-Markovian quantum jumps: Summary

« The NMQJ method allows the unravelling of the non-Markovian time-
local master equation even for negative rates/jump probabilities.

« The method is a straightforward extension of the normal Monte Carlo
Wave Function (MCWF) method, and becomes equivalent with it for
positive rates. Equivalence to the master equation can be shown.

It does not correspond to some measurement scheme such as
detecting spontaneously emitted photons. In fact, it implies that one
can not find such schemes for non-Markovian dynamics.

« The method is already finding its applications in various physical
systems, including “quantum biology”.

« The method is based on ideas developed mainly by Jyrki Piilo and it is
reported in two articles: J. Piilo at al., PRL 100, 180402 (2008); PRA
79, 062112 (2009).
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Alternative approach: Pseudomodes

An alternative method to consider dynamics for spectral densities
which have a pole in complex plane (such as the Lorentzian one) is
the pseudomode approach by B.M. Garraway, PRA 55, 2290 (1997)

We start with the state change Hamiltonian
H=lwyo, o+ >, hona) ay + > (figyayo, +H.c.)
A A

and assume a state with either zero or one excitations.

(1)) = ¢0|g,0y) + c1(1)|e,0,) + E NS

N . o
It can be shown that a pole z;=w_.—il'/2 in spectral distribution
appears as an extra mode for the system:
dp

I’
— =—i[H,,pl- —[a'ap - 2apa” + pa’a
” [Ho.p] 2[ p—2apa’ + pa'al

Hy=wyo,0_+wa'a+Qa’'o_+ac,]
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Alternative approach: Pseudomodes

The system is now such that the atom and pseudomode form a new
system that undergoes normal Markovian decay.

d I
;’; =—i|Hy,p] - E[afap —2apa’ + pa'al

Hy=wy0,0_+wa'a+Qa’'o_+ac,]
If we write the pseudomode amplitude as b1 () we get the equations
of motion for the system:
d

i—ci=wnc;+Qoby, 1—by=z:b;+ QC
7€ 0C1 001 g1 Al 0C1

Thus we have the excited state of the atom and the pseudomode
coupled, and the pseudomode population can decay out of the system
because 7, =w, —il'/2

Sum of atomic populations is conserved but not the pseudomode.
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Alternative approach: Pseudomodes

Thus, for all spectral densities with poles we can write a model with a
system of an atom+pseudomodes, and the pseudomode population
decays in a Markovian fashion.

We are limited by the need of having one or more poles, but then the
approach is not limited to weak couplings between the system (atom)
and its environment.



Department of Physics and Astronomy
University of Turku, Finland

Alternative approach: Pseudomodes
« More poles means more pseudomodes. However, let us consider a
special Lorentzian with a dip at the centre (photonic bandgap model):

(0= w)*+([T1/2)° (0= w)*+(Ty2)’

D(w) =

* We get two pseudomodes with constant decay and

fa, + w.asar + Qolalo_+ ayo,]

Hy=wyo,0_+ w.a
+V(dia, +aal),
which shows that also the pseudomodes are coupled,
V=AW Wy (T =T,) /2

but only one of the pseudomodes is coupled to the atom.
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Alternative approach: Pseudomodes
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Alternative approach: Pseudomodes

One can actually show that the pseudomode approach and the time-
local master equation with time-dependent rates are equivalent.

It turns out that the pseudomode rate of change relates to the time-
dependent rates in the time-local non-Markovian master equation:

d|b,(1)]?
| ;(;)‘ + T[by ()] = y1)|e, ()]

With this, the pseudomode approach becomes also equivalent to the
NMQJ method.

For more details, see L. Mazzola et al., PRA 80, 012104 (2009)

We can turn this around as well: if a system is coupled to some mode
or modes, which then decay in a Markovian way, we have a non-
Markovian system.
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Summary

* In these lectures | have dwelled into the concepts and dynamics of
open quantum systems & decoherence from various directions.

* Non-Markovian dynamics has recently become a popular topic in
research due to the existence of spectrally non-trivial environments, or
due to the possibility to engineer them (reservoir engineering).

« The drive to construct quantum computers using various e.g. solid
state systems challenges some of the traditional quantum optics
viewpoints. For instance, one can not assume that the secular
approximation is valid in such systems.

* In quantum information (and other fields as well) decoherence is
usually considered as a problem. Sometimes, as in energy transport,
its presence may actually be necessary, in order to avoid localisation
effects (see e.g. recent work by Plenio, Huelga & coworkers).



